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The Information Age

I We live in an Information Age.

I Computers collect and store information in quantities that were
earlier unimaginable.

I What is this information?
I Measurements, counts, costs, sales revenue...
I arising in sciences, public health, business...

I Raw, “undigested” data stored on computer disks is useless unless
we make sense of it.

I Statistics: the art and science of extracting meaning from seemingly
incomprehensible data.

I Make good use of information to make sound decisions.



Space debris



I Researchers in diverse areas such as climatology, ecology,
environmental health, and real estate marketing are increasingly
faced with the task of analyzing data that:

I have many important predictors and response variables,

I are often presented as maps,

I and/or as data streaming in over time



Example:

In an epidemiological investigation, we might wish to analyze lung,
breast, colorectal, and cervical cancer rates

I by county and year in a particular state

I with smoking, mammography, and other important screening and
staging information also available at some level.



Areal unit data
Maps of raw standard mortality ratios (SMR) of lung and esophagus
cancer between 1991 and 1998 in Minnesota counties
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Public health professionals who collect such data are charged not only
with surveillance, but also statistical inference tasks, such as

I modeling of trends and correlation structures

I estimation of underlying model parameters

I hypothesis testing (or comparison of competing models)

I prediction of observations at unobserved times or locations.



Datasets we are exploring

I Asthma: Asthma has been commonly linked to air pollutants, especially ozone and PM10. The heath outcome of interest is
county level Emergency Room (ER) visit counts for asthma within high risk regions in California (CA), New York (NY), and
Michigan (MI) observed between 2000-2008 (or sub-intervals depending on data availability). For California, the Office of
Statewide Health Planning and Development (OSHPD) provides county specific information on all emergency room visits in
licensed hospitals http://www.oshpd.state.ca.us. The Statewide Planning and Research Cooperative System (SPARCS)
www.health.state.ny.us/statistics/sparcs/index.htm offers asthma related hospital visits for New York State. Similar data
are maintained by the Michigan Inpatient Database.

I Skin-cancer: Non-melanoma skin cancer (NMSC), comprised primarily of basal cell carcinoma (BCC) and squamous cell
carcinoma (SCC) in a ratio of 4 : 1, is linked to exposure to ultraviolet radiation – perhaps one of the major contributors to the
development of non-melanoma skin cancer. Data from NCI’s SEER database.

I Salmonellosis: The first detectable changes in human health from the impact of climatic factors may well be alterations in the
geographic range and seasonality of certain infectious diseases – including food-borne infections (e.g. salmonellosis) which peak
in the warmer months. Data for salmonellosis will come from the Center for Disease Control’s (CDC) Foodborne Diseases Active
Surveillance Network (FoodNet) surveillance system.

I Predictors come from National Air Monitoring Stations and State and Local Air Monitoring Stations
(http://www.epa.gov/cludygxb/programs/namslam.html); U.S. Census Bureau (www.census.gov) along with available health
risk or exposure data provided by states’ bureau of health; complete coverage climate (precipitation, temperature, temperature
extremes, etc.) raster data generated by The National Centers for Environmental Prediction’s (NCEP’s) North American
Regional Reanalysis (NARR) (http://www.emc.ncep.noaa.gov/mmb/rreanl).

http://www.oshpd.state.ca.us
www.health.state.ny.us/statistics/sparcs/index.htm
http://www.epa.gov/cludygxb/programs/namslam.html
www.census.gov
http://www.emc.ncep.noaa.gov/mmb/rreanl




Introduction – Space-Time Data Analysis

I The importance of “Where” and “When” in statistics.

I Space-time modeling falls under one of four settings:

1. Continuous space, discrete time
I Example: Monthly temperature data

2. Continuous space, continuous time
I Example: Directional wind data

3. Discrete space, discrete time
I Example: Yearly asthma rates across counties

4. Discrete space, continuous time
I Example: Daily asthma rates across counties?

I “Discrete” usually refers to some level of aggregation.

I The last category has, arguably, garnered scant attention.
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Introduction

I Asthma Hospitalization Rates in California

I County level data (Ns = 58 spatial regions)

I Aggregated monthly from 1991–2008 (Nt = 216 time points)

I Often converted to rates — say per 1,000 residents

Can we reconstruct hospitalization rates at a daily level? Can we
estimate rate of change in hospitalization rates?

I We need to operate at a resolution much finer than that of the
observations.

I Cannot treat this problem as one of discrete space - discrete time.
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Introduction – The Data

Figure: Raw asthma hospitalization rates, aggregated over year



Introduction – The Data

Figure: Raw asthma hospitalization rates



Introduction—Covariates

Based on the asthma literature, we consider the following covariates:

I To account for seasonality, we include monthly fixed effects (using
January as a baseline)

I Population density, % Black, % Under 18
I Using 2000 U.S. Census
I Vary spatially, but not temporally

I Ozone level (spatiotemporally varying)
I From California Environmental Protection Agency
I Number of days per month exceeding the state 8 hour standard for

acceptable ozone levels
I Compiled at the air basin level (regions with similar meteorological

and geographic conditions throughout)



Introduction – Covariates

Figure: Asthma hospitalization covariates, standardized with mean 0 and
variance 1. Colors range from dark blue to dark red, with cutoffs at
(−2,−1.2,−0.4, 0.4, 1.2, 2). Note: San Francisco County is significantly more
densely populated than any other county, but is too small to be visible.



Areally referenced space-time model

Yi (t) = µi (t) + Zi (t) + εi (t), εi (t)
ind∼ N(0, τ 2

i ) for i = 1, 2, . . . ,Ns

I µi (t) = βi0 + βi1x1(t) + · · · + βipxp(t)

I Zi (t) is a region-specific stochastic process (an unknown function) over
time

I τ 2
i > 0 implies discontinuity in outcome.

Or model the mean in a GLM framework

g(E [Yi (t)]) = µi (t) + Zi (t), for i = 1, 2, . . . ,Ns

We posit that Zi (t)’s for neighboring i ’s will be similar.



Temporal gradients

I Temporal finite differences:

Zi (t0) =
Zi (t0 + h)− Zi (t0)

h
, i = 1, 2, . . . ,Ns

I Temporal gradient:

d

dt
Zi (t) = Z ′i (t0) = lim

h→0

Zi (t0 + h)− Zi (t0)

h

I Why are we interested in these quantities?
I High gradients = “outliers”
I Can identify lurking covariates that affect response through local

change
I Helps in policy formulation and hospital administration



Example: Demonstrate ability to capture gradients

Figure: Simulation Results: plots of the spatiotemporal random effects and
temporal gradients.



Political maps as a graph

I A (political) map (i.e. one showing territorial borders) can be fully
described as an algebraic graph G = (V ,E )

I V is the set of nodes = regions/territories

I E is the set of edges = “is a neighbor of” (symmetric relation)

I There are no self-edges: no region is a neighbor of itself

I Let W = {wij} be the adjacency matrix of G : wij = 0 if regions i
and j are not neighbors and 6= 0 (usually > 0) when i and j are
neighbors, denoted i ∼ j .

I Construct D = diag(w1+,w2+, . . . .wNs+); wi+ =
∑Ns

j=1 wij

I Diagonal elements in D = number of neighbors of that region.

I If a region is an “island” the corresponding element in D is zero.



The Laplacian of a graph

I The Laplacian of a connected graph (map) is:

D − αW = D1/2(I − αD−1/2WD−1/2)D1/2

I If λmin and λmax are the minimum and maximum eigenvalues of
D−1/2WD−1/2, then

λmin < 0 and λmax = 1 .

I The Laplacian is positive definite if and only if:

α ∈
(

1

λmin
, 1

)
. It is singular if α = 1 .

I Laplacian is p.d. if and only if (D − αW )−1 is p.d.

I Two potential candidates for modeling variance-covariances.

I For a map with islands: build p.d. Laplacians from connected
components.



Markov random field for each time point

I A geographical map is an algebraic graph with nodes = regions and
edges = “is a neighbor of”

I Adjacency matrix: W = {wij}; wij = 0 if regions i and j are not
neighbors and 1 when regions i and j are neighbors, denoted i ∼ j .

I Conditional distribution for each Zi (t):

p(Zi (t) | {Zj 6=i (t)}) ∼ N

∑
j∼i

α
wij

wi+
Zj(t),

σ2

wi+

 ,

where wi+ =
∑

j∼i wij , σ
2 > 0, and α ∈ (0, 1) ensures “propriety”.

I If Z(t) = (Z1(t),Z2(t), . . . ,ZNs (t))>, then

Z(t) ∼ N
(
0, σ2(D − αW )−1

)
; D = diag{wi+} .

Note: the MRF above does not model temporal dependence yet.



Complex Spatial Dependencies
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Data Analysis – Model Comparisons

pD DIC∗ G-R∗

Simple Linear Regression 79 9,894 -16,166
Random Intercept and Slope 165 4,347 -10,403
CAR Model 117 7,302 -13,436
Areally Referenced Gaussian Process 5,256 0 0

Table: Comparisons between our areally referenced Gaussian process model and
the three alternatives. Smaller DIC values indicates a better trade-off between
model fit and model complexity, as do larger (less negative) Gneiting-Raftery
(G-R) scores. Both DIC and G-R shown are standardized relative to our areally
referenced Gaussian Process model.



Data Analysis—Parameter Estimates

Using the covariates listed earlier, our xi (tj) is a 16× 1 vector

Parameter Median (95% CI) Parameter Median (95% CI)

β0 (Intercept) 9.17 (8.93, 9.42) β10 (July) -3.78 (-4.21, -3.37)
β1 (Pop Den) 0.60 (0.49, 0.70) β11 (August) -3.58 (-4.02, -3.13)
β2 (Ozone) -0.18 (-0.28, -0.08) β12 (September) -1.96 (-2.37, -1.54)
β3 (% Under 18) 1.24 (1.15, 1.34) β13 (October) -1.36 (-1.73, -1.00)
β4 (% Black) 1.12 (1.01, 1.24) β14 (November) -0.71 (-1.02, -0.42)
β5 (February) -0.25 (-0.46, -0.04) β15 (December) 0.63 (0.41, 0.86)
β6 (March) -0.21 (-0.48, 0.07) φ 0.90 (0.84, 0.97)
β7 (April) -1.47 (-1.81, -1.12) α 0.77 (0.71, 0.80)

β8 (May) -1.17 (-1.53, -0.8) σ2 21.52 (20.18, 23.06)

β9 (June) -2.79 (-3.21, -2.4) τ̄2
· 3.32 (0.18, 213.16)

Table: Parameter estimates for asthma hospitalization data, where estimates
for τ̄ 2

· represent the median (95% CI) for all of the τ 2
i



Data Analysis—Parameter Estimates

Parameter Median (95% CI) Parameter Median (95% CI)
β0 (Intercept) 9.51 (8.46, 10.51) β15 – β26 (Ozone)
β1 (Pop Den) 0.63 (0.55, 0.71) — January 0.51 (-0.95, 1.94)
β2 (% Black) 1.23 (1.13, 1.33) — February 0.39 (-0.61, 1.53)
β3 (% < 18) 1.24 (1.13, 1.34) — March 0.42 (-0.05, 0.89)
β4 (Feb) -0.36 (-1.49, 0.85) — April 0.21 (-0.05, 0.49)
β5 (Mar) -0.24 (-1.32, 0.83) — May -0.17 (-0.33, 0.00)
β6 (Apr) -1.60 (-2.66, -0.51) — June -0.36 (-0.53, -0.20)
β7 (May) -1.39 (-2.46, -0.30) — July -0.22 (-0.35, -0.09)
β8 (June) -2.46 (-3.59, -1.37) — August -0.20 (-0.33, -0.07)
β9 (July) -3.29 (-4.47, -2.19) — September -0.28 (-0.42, -0.12)
β10 (Aug) -3.16 (-4.33, -2.08) — October 0.06 (-0.13, 0.25)
β11 (Sep) -1.94 (-3.03, -0.88) — November 0.52 (0.03, 1.05)
β12 (Oct) -1.78 (-2.82, -0.70) — December 3.15 (1.43, 5.08)
β13 (Nov) -0.87 (-1.94, 0.24) α 0.88 (0.85, 0.90)
β14 (Dec) 2.42 (1.12, 3.64) φ 1.24 (1.18, 1.30)

Table: Posterior medians and 95% credible intervals (CI) for β and φ from our
asthma hospitalization rate data.



Data Analysis – Spatiotemporal Random Effects

Figure: Spatiotemporal random effects for asthma hospitalization data, by year



Data Analysis – Temporal Gradients

Figure: Temporal gradients for asthma hospitalization data, by year



Data Analysis – Los Angeles County vs. San Francisco
County

Figure: Comparison between the spatiotemporal random effects in Los Angeles
and San Francisco Counties, and an investigation of temporal gradients in Los
Angeles County.



Data Analysis – Los Angeles County

Figure: Posterior predicted curves (and 95% credible bounds) for the daily
asthma hospitalization rates in Los Angeles County between November 15,
1995 to January 15, 1996. This county and interval was selected due the
presence of a significantly positive gradient between November and December
and a significantly negative gradient between December and January. The true
hospitalization are also shown for comparison purposes, though the model was
fit using only the monthly aggregates.



Data Analysis – August → September

Note that, on average, September has 1.62 more hospitalizations per
1,000 people than August

This figure indicates this difference is decreasing over time.
A similar phenomenon is occurring between March and April, as well.

I The seasonality in the data appears to diminish over time

I Winter is becoming more like summer, or at least its effect on
asthma hospitalizations is



Conclusion

I Using a continuous-time model permits inference at a resolution
finer than that of the observed data.

I Insight can be gained from an assessment of temporal gradients in
the residual process.

I could be used to motivate search for temporally interesting
covariates not included in our model.

I Statistical Significance
I While possible to identify statistically significant gradients, context is

important.
I Here, gradients are computed between time points which we believe

are “different” (due to seasonality)

I Models for regionally-referenced functional data.



Thank you!
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