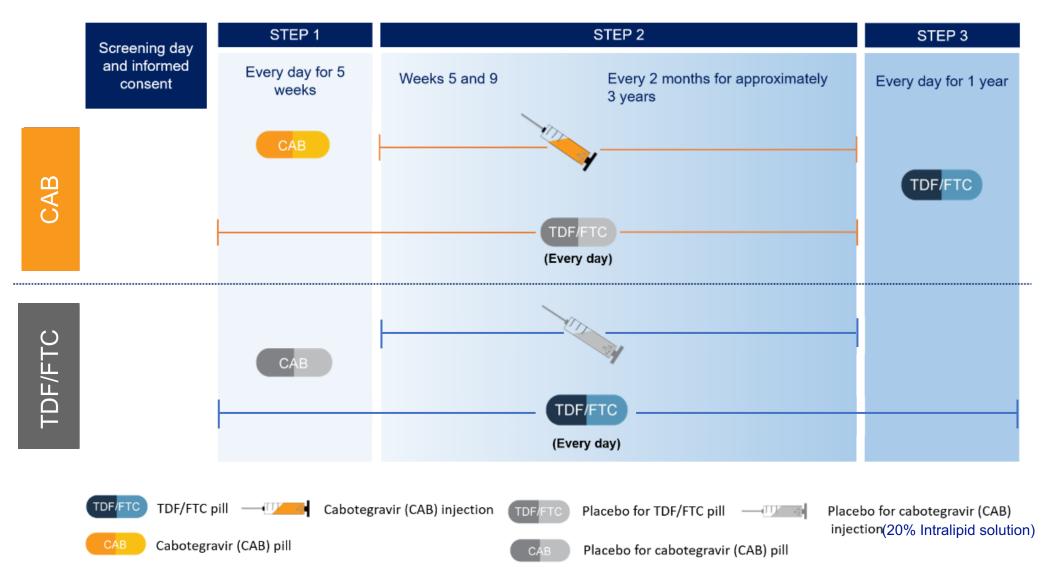
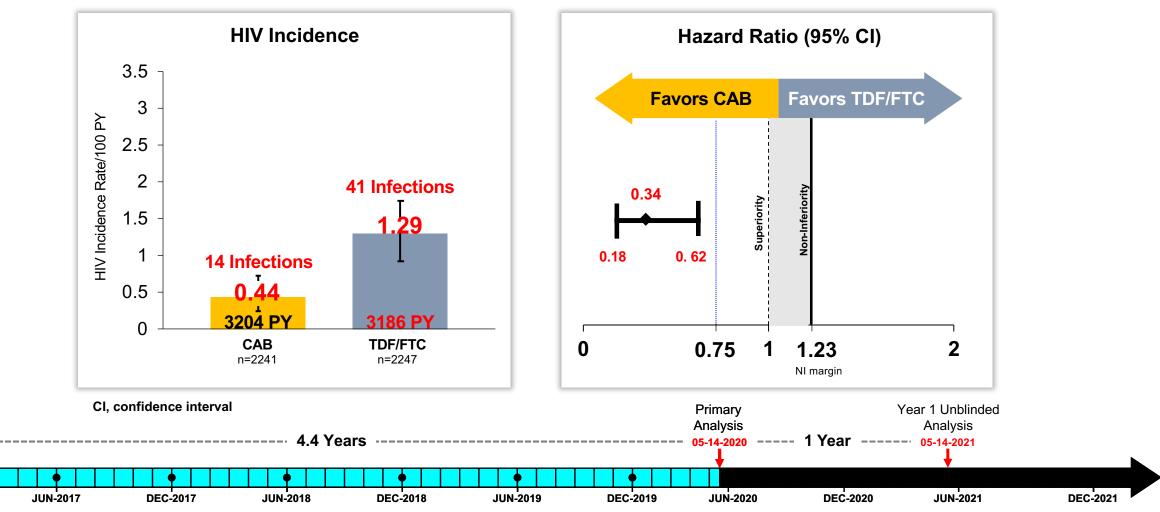
What We Know and What We Do Not Know About Long-acting PrEP


Raphael J. Landovitz, MD MSc

Professor of Medicine UCLA Center for Clinical AIDS Research & Education Equitable LAI PrEP Workshop, March 8, 2023

Raphael J. Landovitz has served on Scientific Advisory Boards for Merck.

HPTN 083/084 Study Design



Landovitz RJ et al. AIDS 2020, #OAXLB0101

EFFICACY

HPTN 083 HIV Incidence: CAB vs. TDF/FTC

Primary blinded period, through May 2020

Landovitz, R. HIV Glasgow 2022.

Open to

Enrollment

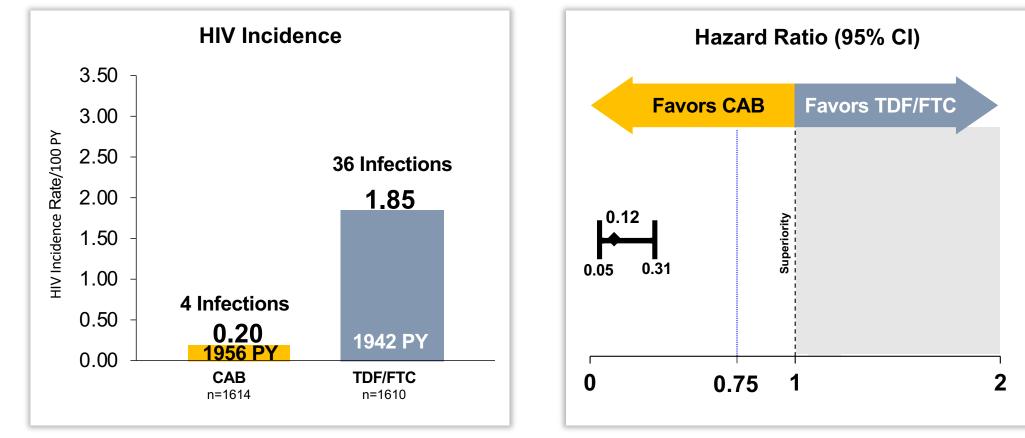
12-16-2016

DEC-2016

HPTN 083 HIV Incidence: CAB vs. TDF/FTC

Combined blinded and unblinded period, through May 2021

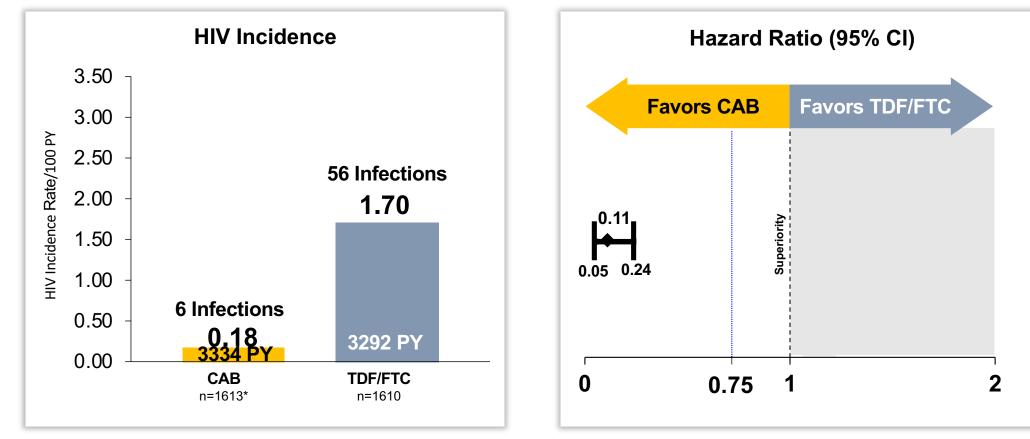
Open to


Enrollment

12-16-2016

DEC-2016

HPTN 084 HIV Incidence: CAB vs. TDF/FTC


Blinded period, through Nov 2020

CI, confidence interval

HPTN 084 HIV Incidence: CAB vs. TDF/FTC

Combined blinded and unblinded period, through Dec 2021

CI, confidence interval

The Bottom Line: Efficacy

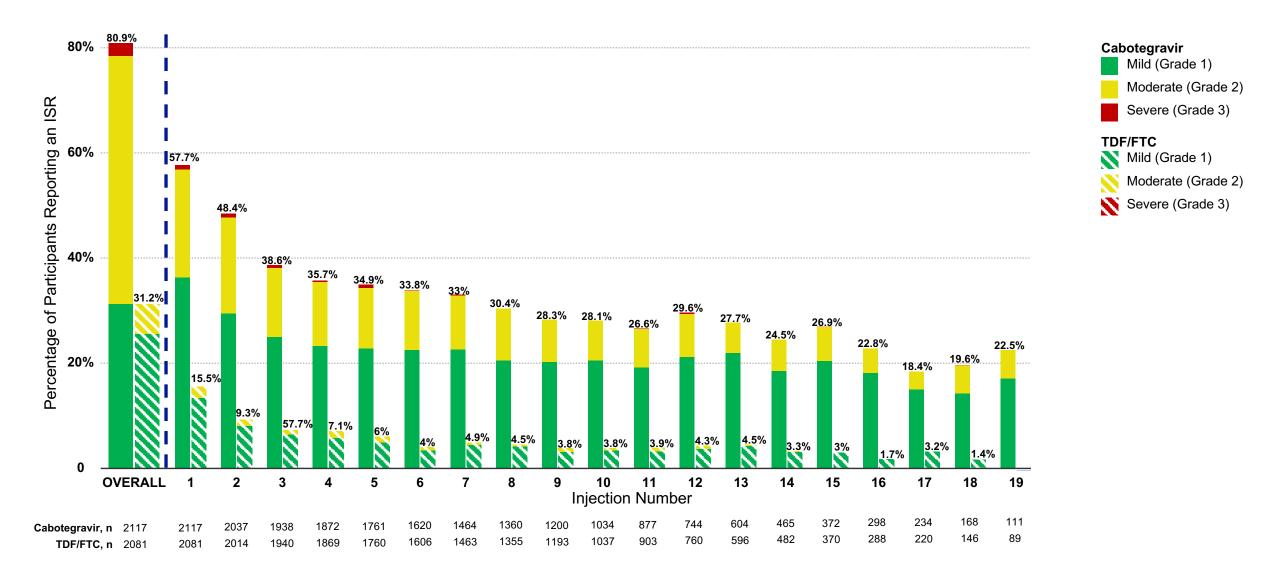
- Long-acting cabotegravir is very effective at preventing HIV in MSM, TGW, and cisgender women
 - 66% reduction in HIV infection when compared to MSM and TGW who were offered TDF/FTC
 - 89% reduction in HIV infection when compared to cisgender women who were offered TDF/FTC

HPTN 083 HIV Incidence by Subgroup CAB vs. TDF/FTC

C. harrow	САВ	TDF/FTC	C (oracle)	Hazard ratios (95%CI)			
Subgroup	Events/PY (IR%)	Events/PY (IR%)	HR (95%CI)	0.01	0.1	1 3	6
Age				1	1 1		T
≤30	11/2185 (0.50)	33/2114 (1.56)	0.32 (0.16, 0.63)		├ ─■-		
>30	2/1016 (0.20)	6/1071 (0.56)	0.33(0.07, 1.61)		■-		
Cohort							
TGW	2/368 (0.54)	7/383 (1.83)	0.29 (0.06, 1.41)		⊢		
MSM	11/2829 (0.39)	32/2800 (1.14)	0.34 (0.17, 0.67)		⊢∎		
Race							
Black/African-American	4/686 (0.58)	15/711 (2.11)	0.28 (0.10, 0.83)		├■		
Non-Black/African-American	0/837 (0.00)	5/790 (0.63)	0.09 (0.00, 2.06)	 			
Region							
US	4/1523 (0.26)	20/1501 (1.33)	0.19 (0.07, 0.56)		⊢■	-	
Latin America	6/1016 (0.59)	11/1007 (1.09)	0.54 (0.20, 1.46)		⊢	∎- -1	
Asia	2/569 (0.35)	6/580 (1.03)	0.34 (0.07, 1.66)		⊢		
Africa	1/92 (1.08)	2/96 (2.08)	0.52 (0.05, 5.77)		 	-	H

HPTN 084 HIV Incidence by Subgroup CAB vs. TDF/FTC

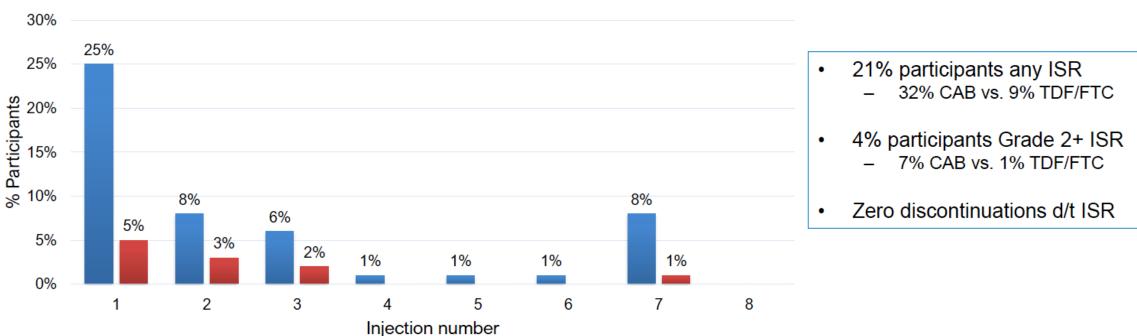
	САВ			Hazard ratios (95% CI)		
Subgroup	Events/PY (IR%)	TDF/FTC Events/PY (IR%)	HR (95%)	<u>0.01 0.1 1 · · · · · · · · · · · · · · · · · ·</u>		
Overall	4/1956 (0·20%)	36/1942 (1·85%)	0·12 (0·05–0·31)	_		
Age						
<25 years	3/866 (0·35%)	20/851 (2·34%)	0.17 (0.05–0.54)	_		
≥25 years	1/1090 (0.09%)	16/1091 (1·47%)	0.09 (0.02–0.49)			
Contraceptive Method						
DMPA	3/1009 (0·30%)	21/1000 (2·10%)	0.16 (0.05–0.53)			
NET-EN	1/175 (0·57%)	6/182 (3·30%)	0.22 (0.03–1.48)	_		
Implant	0	8/607 (1·32%)	0.06 (0.00–1.16)			
Other	0	1/152 (0·66%)	0.32 (0.01–9.89)			
BMI						
≤30 kg/m²	4/1389 (0·29%)	27/1447 (1·87%)	0.16 (0.06–0.45)			
>30 kg/m ²	0	9/495 (1·82%)	0.05 (0.00–0.96)			


Delany-Moretlwe, S et al. Lancet. 2022.

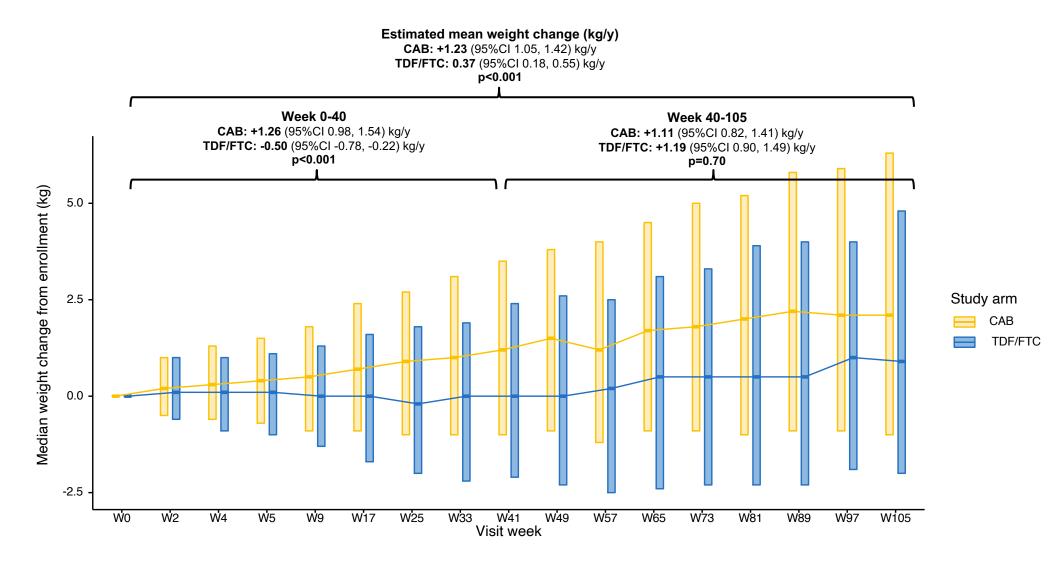
The Bottom Line: Efficacy in specific populations

- Long-acting cabotegravir is also very effective at preventing HIV in:
 - Young individuals
 - Black individuals
 - Transgender women
 - Individuals from various regions of the world
 - Individuals using various contraceptive methods
 - Individuals with higher BMIs

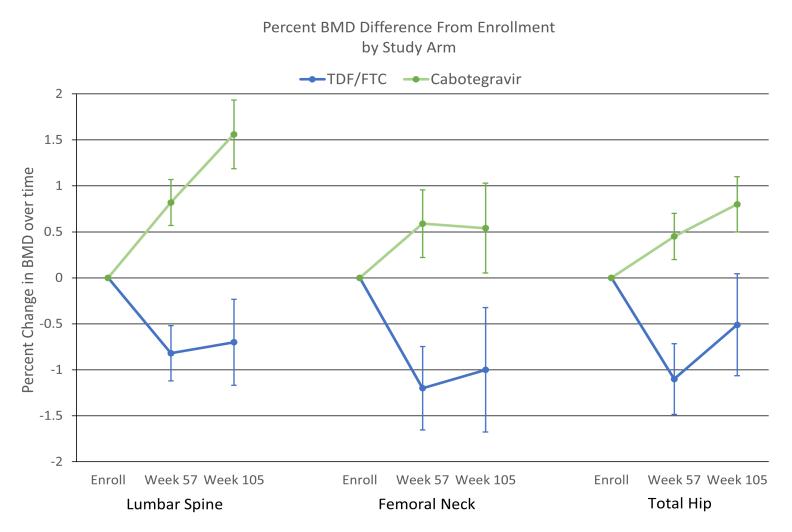
SAFETY


HPTN 083: Injection Site Reactions

Landovitz RJ et al. NEJM 2021


HPTN 084: Injection Site Reactions

Any ISR, by injection number and arm



CAB n=1519 TDF/FTC n=1516

HPTN 083: Median Change in Weight (kg)

HPTN 083: DXA BMD change over time

- BMD decreased in the TDF-FTC arm by 0.5-1.0%
- BMD increased in CAB-LA arm 0.5-1.5%

Brown T et al. CROI 2023. Poster #987.

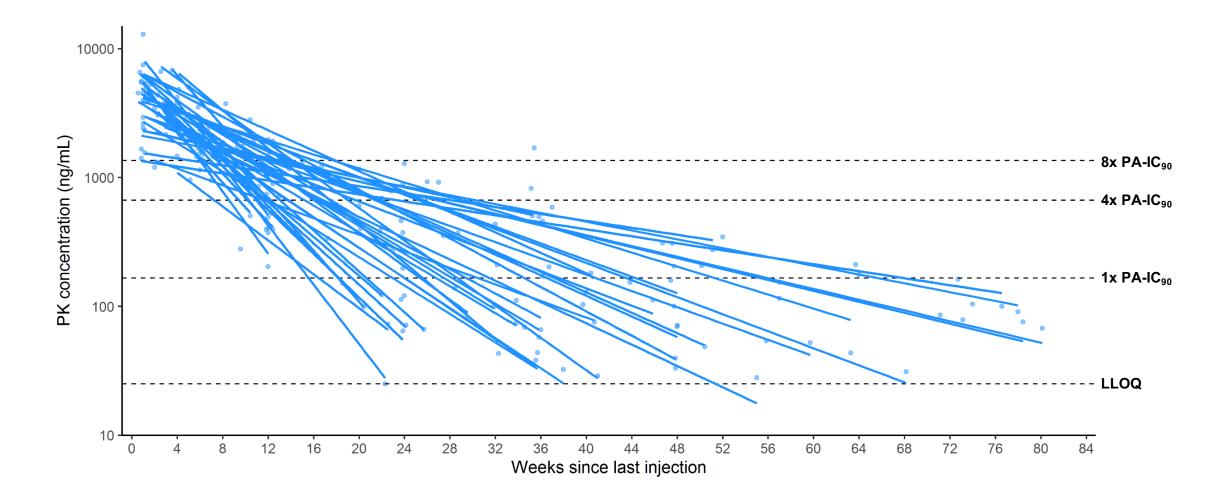
The Bottom Line: Safety

- Long-acting cabotegravir was safe and well tolerated
- The most common side effect was injection site reaction (ISR)
 - The majority were mild to moderate in severity
 - Reports of ISRs decreased over time
 - Very few ISRs led to the discontinuation of cabotegravir
- We're all gaining weight, people on CAB-LA and TDF/FTC at about the same rate EXCEPT for the first year, where TDF/FTC people LOST weight (but then gained thereafter)
- By DXA measurement, CAB-LA had better outcomes than TDF-FTC over two years; no clinical differences

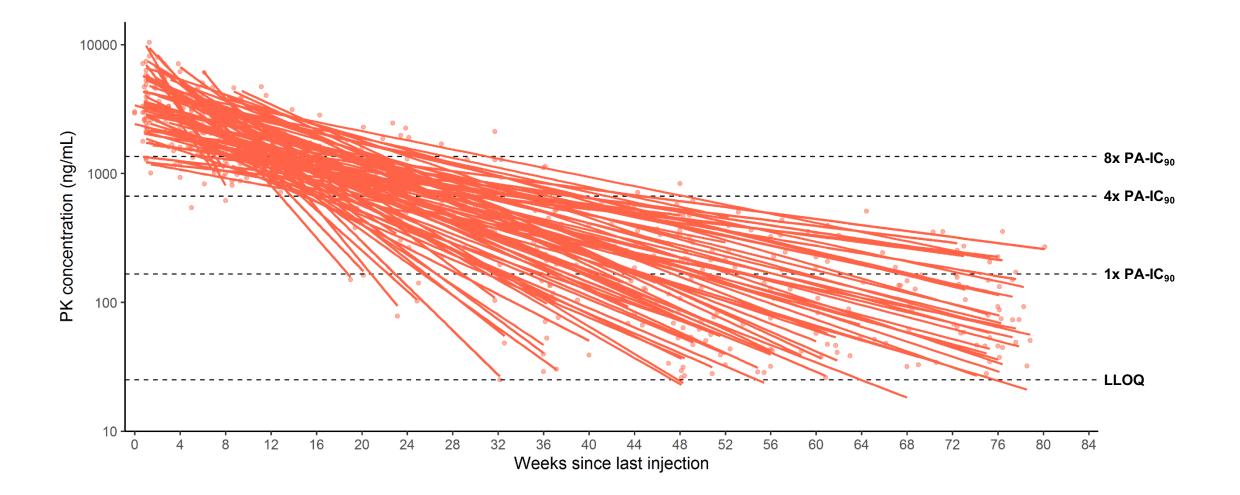
HPTN 084 Cumulative Pregnancy Outcomes CAB vs. TDF/FTC

	Total n=132	CAB n=63	TDF/FTC n=69
Ongoing	57	23	34
Known pregnancy outcomes*			
Live births	61	31	30
Pregnancy loss			
≥37 weeks	0	0	0
20-36 weeks	3	1	2
<20 weeks**	13	9	4
Congenital anomalies	0	0	0

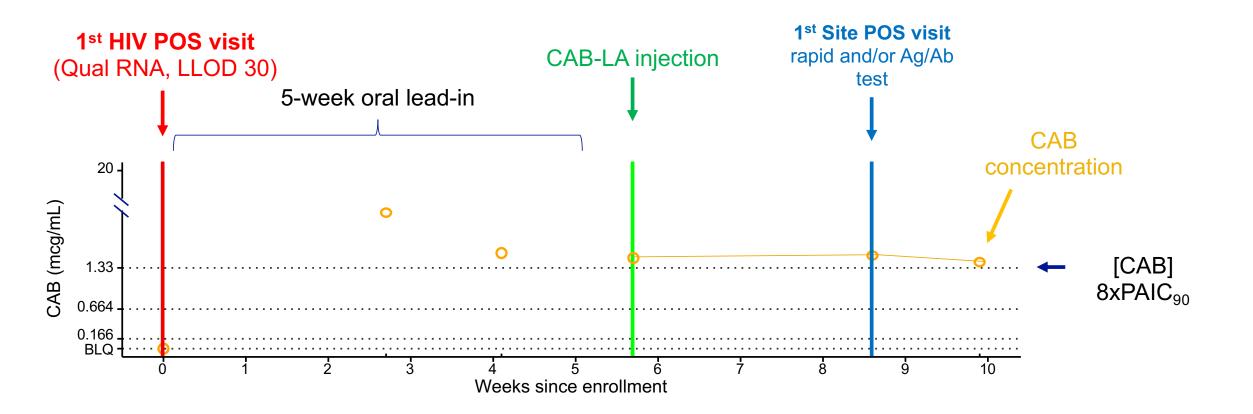
*includes multiple births

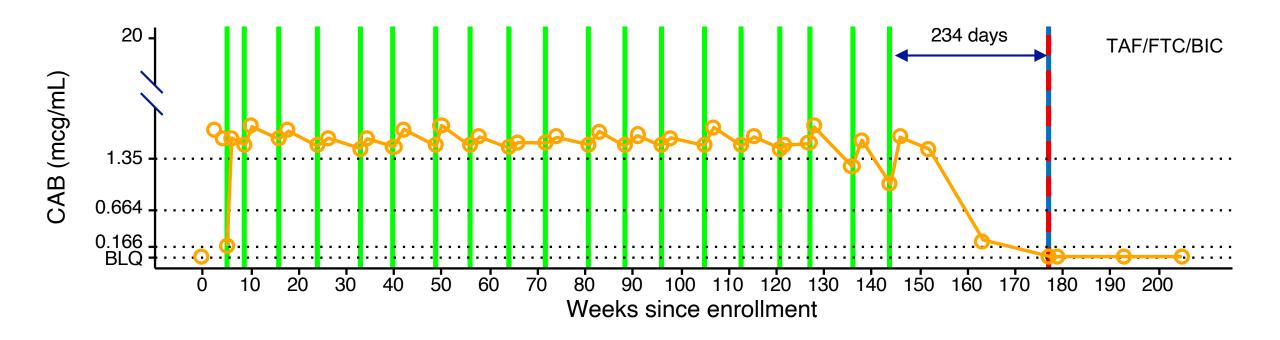

**includes ectopic pregnancy, elective and spontaneous abortion

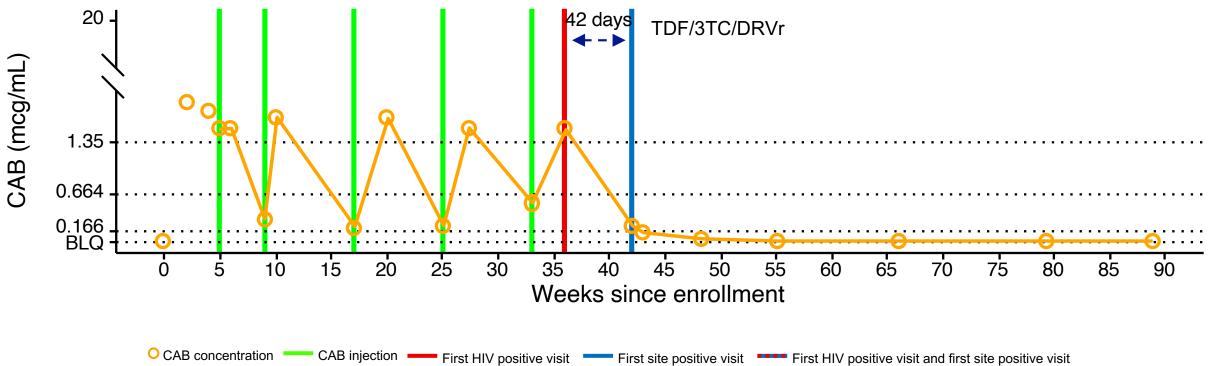
The Bottom Line: Pregnancy


- Data are still being collected on the safety of cabotegravir during pregnancy and breastfeeding
- •To date, data does not suggest there are any safety concerns

PHARMACOKINETICS (That's a Fancy word for 'drug levels')


CAB Subsequent to Final Injection (Log Scale) Males

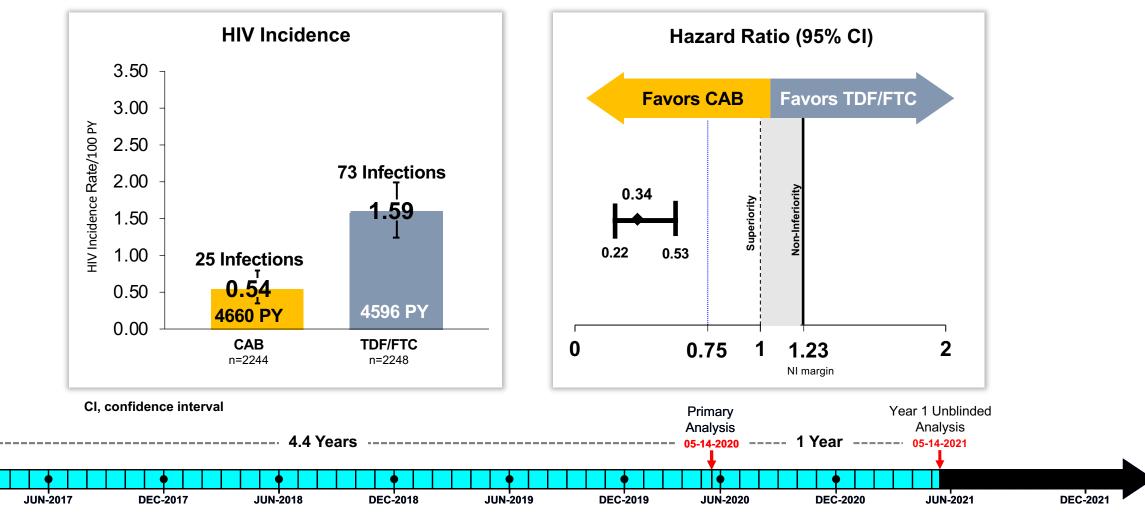

CAB Subsequent to Final Injection (Log Scale) Females


Schematic for Seroconversions

Expected Pattern of CAB Concentrations

Fast Elimination – One case so far

Time between first HIV positive visit and first site positive visit **+-** Time between last injection and first HIV positive visit


The Bottom Line: Pharmacokinetics in Men and Women

- People born male: the median time from the last injection to the time when CAB concentration fell below the LLOQ was 10.1 Months
- **People born female**: the median time from the last injection to the time when CAB concentration fell below the LLOQ was 1 year and 3.5 months
- Higher BMI associated with more prolonged period of exposure
- Rapid concentration decay in rare participants remains to be fully explained but likely is not a genetic "fast metabolizer" abnormality

FAILURES

REMINDER: BOTH PrEP MEDICATIONS WORK EXTREMELY WELL

Combined blinded and unblinded period, through May 2021

Open to

Enrollment

12-16-2016

DEC-2016

FAILURE GROUPS IN HPTN 083

- Group A cases: HIV acquired at enrollment
- Group B cases: HIV acquired w/o recent CAB exposure
- Group BR cases: HIV acquired >6 months after the last CAB injection and an injection given at the time of the first positive visit
- Group C cases: HIV acquired during oral lead-in
- Group D cases: HIV acquired in the setting of on-time CAB injections
- Group DX cases: HIV acquired while on CAB with at least one 10-week delayed injection

FAILURE GROUPS IN HPTN 083

- Group A cases: HIV acquired at enrollment
- Group B cases: HIV acquired w/o recent CAB exposure
- Group BR cases: HIV acquired >6 months after the last CAB injection and an injection given at the time of the first positive visit
- Group C cases: HIV acquired during oral lead-in
- Group D cases: HIV acquired in the setting of on-time CAB injections
- Group DX cases: HIV acquired while on CAB with at least one 10-week delayed injection

CAB arm, Group A

What we learned:

- If we do not diagnose HIV before PrEP agents start (acute or eclipse phase infection = very early infection), CAB can make it challenging to diagnose later
- Failure to diagnose HIV infection can lead to continued CAB administration, and even continued CAB injections

FAILURE GROUPS IN HPTN 083

• Group A cases: HIV acquired at enrollment

- Group B cases: HIV acquired w/o recent CAB exposure
- Group BR cases: HIV acquired >6 months after the last CAB injection and an injection given at the time of the first positive visit
- Group C cases: HIV acquired during oral lead-in
- Group D cases: HIV acquired in the setting of on-time CAB injections
- Group DX cases: HIV acquired while on CAB with at least one 10-week delayed injection

CAB arm, Group B & BR

What we learned:

- If you don't take CAB, it doesn't prevent HIV infection
- In 3 participants, exposure and HIV acquisition during the "tail" did not result in CAB resistance
 - This is reassuring, but DOES NOT RULE OUT THAT IT CAN HAPPEN WE NEED MORE DATA
 - When CAB is restarted after prolonged hiatus, failure to diagnose interim newly acquired HIV can lead to INSTI resistance, much as "A" cases can
- When people were provided open-label TDF/FTC to "cover they tail" they did not take it – this likely contributed to HIV acquisition

FAILURE GROUPS IN HPTN 083

- Group A cases: HIV acquired at enrollment
- Group B cases: HIV acquired w/o recent CAB exposure
- Group BR cases: HIV acquired >6 months after the last CAB injection and an injection given at the time of the first positive visit
- Group C cases: HIV acquired during oral lead-in
- Group D cases: HIV acquired in the setting of on-time CAB injections
- Group DX cases: HIV acquired while on CAB with at least one 10-week delayed injection

CAB arm, Group C

What we learned:

- If you don't take CAB, it doesn't prevent HIV infection
 - $\boldsymbol{\cdot}$ We don't know how "forgiving" it is to missed doses
- $\boldsymbol{\cdot}$ There is likely a "time to onset" of protection with oral CAB
 - We don't know how long
- If CAB delays new (incident) HIV detection by delaying testing, CAB injections can inadvertently be given
- As with the "A" Cases, viral "escape" at HIGH CAB levels can lead to CAB (and other integrase) resistance

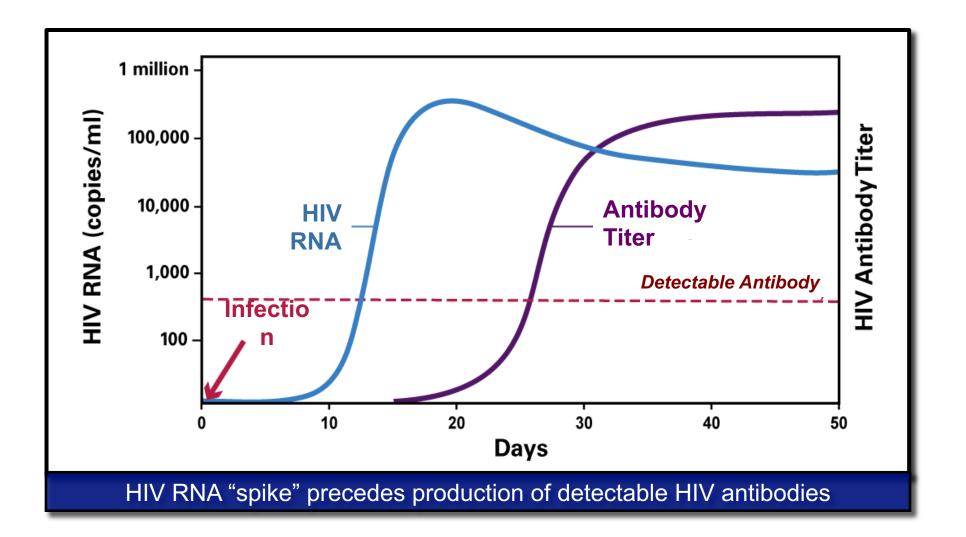
FAILURE GROUPS IN HPTN 083

- Group A cases: HIV acquired at enrollment
- Group B cases: HIV acquired w/o recent CAB exposure
- Group BR cases: HIV acquired >6 months after the last CAB injection and an injection given at the time of the first positive visit
- Group C cases: HIV acquired during oral lead-in
- Group D cases: HIV acquired in the setting of on-time CAB injections
- Group DX cases: HIV acquired while on CAB with at least one 10-week delayed injection

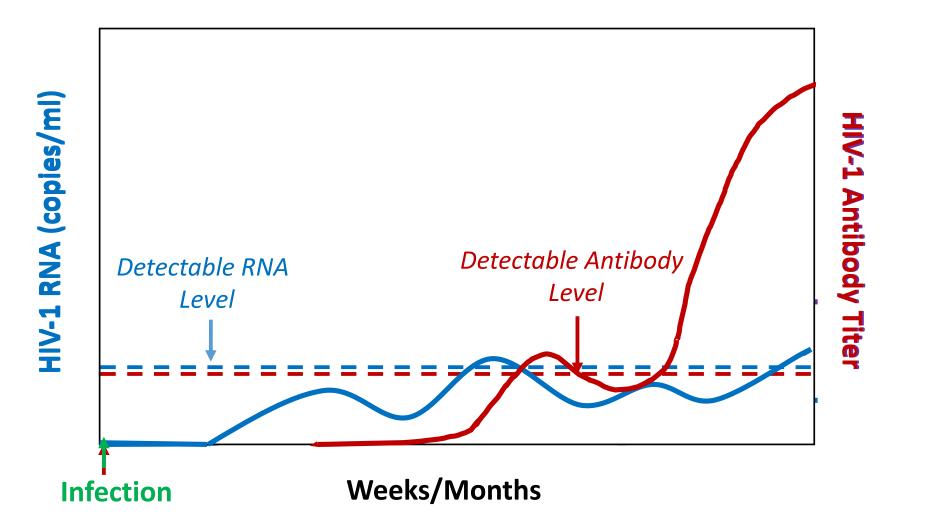
CAB arm, Group D & DX

What we learned:

- Delays in HIV tests detecting "new" HIV infections
- CAB levels in the blood were as expected
 - It wasn't "unexpectedly" low concentrations of CAB that explain the PrEP failure
- If HIV "smolders" after a PrEP failure, it can lead to CAB (and other integrase) resistance
 - That resistance can be often avoided by earlier detection
- When delays occur, CAB levels can drop, losing protection but not leading to INSTI resistance to-date


Bottom Line: Summary of HPTN 083 resistance

CAB INITIATED OR RE-INITIATED WITH OCCULT HIV INFECTION


Initiated Restarted	N (%) 1 (25) 1 (50)	Integrase Resistance Yes Yes
HIV ACQUISITION DURING OLI		
During OLI	2 (66)	Yes
HIV BREAKTHROUGH INFECTION WITH ON-TIME INJECTIONS		
On-time failure	6 (100)	Yes
HIV BREAKTHROUGH INFECTION WITH AT LEAST ONE 10+ WEEK DELAY		
≥1 delay	0 (0)	No
HIV INFECTION 6+ MONTHS FROM LAST INJECTION		
Tail-phase*	0 (0)	No

TESTING DELAYS

Diagnosing Acute HIV

Diagnosing Acute HIV

The Bottom Line: Testing Delays

- RNA testing finds infections earlier, but is costly, may not be feasible in many settings, and may confuse patients and providers
 - This is being explored in HPTN 083 and 084 OLE'
- No delays seen in MSM/TGW when infection is acquired > 6 months after last injection
 - Likely a longer timeline for ciswomen/TGM

CLINICAL USE and IMPLEMENTATION

Making Good Decisions Absent Good Data

What to start?

- Whatever the patient will adhere/persist with best
- There is no ethical/moral "obligation" to use CAB

Onset of protection?

- PK suggests time from first injection (irrespective of OLI) to 8x PA-IC90 is median 2 days, 95% by 7 days
- Durability incredibly interpatient variability (077 data), likely varies by sex (maybe BMI), wouldn't assume more than 9-10 weeks for males, 12+ for females

Breakthroughs (nee: failures)

- Poorly understood to date
- Salvage with NNRTI or r/PI if infection likely to have occurred within 1 year, DTG/BIC-based ART >1 year?

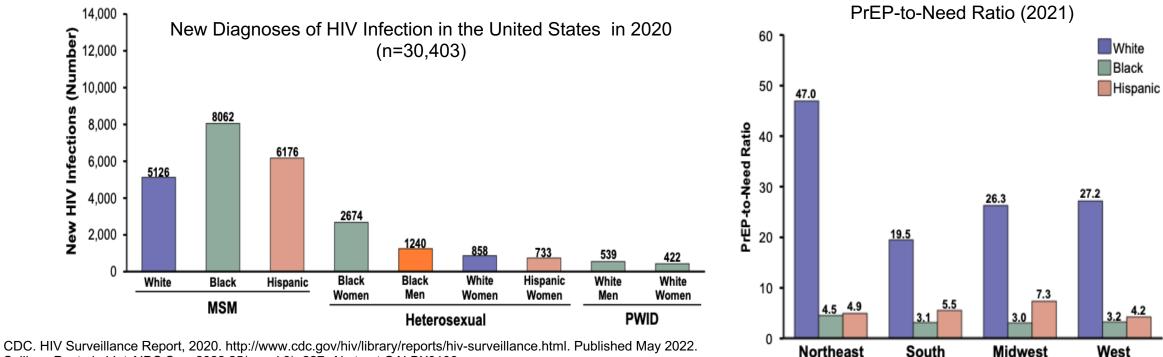
Implementation

- Do we have the global, social, and political will to figure out how to use it?

Can CAB be given at other anatomic sites?

- 118 participants enrolled in a ATLAS-2M substudy to evaluate the pharmacokinetics, safety, tolerability, and efficacy of CAB+RPV LA following short-term repeat IM thigh administration
- Across 704 thigh injections, 327 injection site reactions occurred
 - Most were Grade 1 (55–76%) or 2 (19–38%)
 - 4–7% were grade 3
- The median duration of ISRs was 3–3.5 days
- One Grade 2 ISR led to withdrawal
- Only 28–33% preferred thigh injections
 - This was largely due to ease of access

Felizarta, F et al. CROI 2023. Poster Session-H1.


How will it be paid for?

- Cabotegravir is currently priced at \$22,200 per year
 - >185 times higher than the \$60-\$119 estimated cost-effectiveness threshold for middle-income countries (MICs)
- ViiV recently provided access to generic versions in 90 countries with the Medicines Patent Pool (MPP), including all African nations
 - Not applicable to all LMICS

Can we use it Equitably?

- PrEP-to-need ratio
 - Number of PrEP users divided by the number of new HIV diagnoses in that group in the same year ٠
 - Equity metric, no "target" level •
- US prevention programs in all regions have demonstrated larger gaps in PrEP-to-need ratios by ٠ race/ethnicity
 - Southern states lagged all other regions
- Better programs are needed to provide PrEP to communities and people at greatest risk for HIV infection

Sullivan P, et al. J Int AIDS Soc. 2022;25(suppl 3): 227. Abstract OALBX0106.

Concluding Thoughts

- Long-acting cabotegravir is highly effective for prevention of HIV in MSM, TGW, cisgender women and various subgroups
 So is Tenofovir-based oral PrEP
- CAB is safe, generally well-tolerated, and data does not suggest there are safety concerns for use during pregnancy or breastfeeding
- The washout period after last CAB injection is longer in individuals born female compared to individuals born male
- RNA testing finds CAB breakthrough infections earlier, and often before resistance, but high cost and may not be feasible in many settings
- We need strong community advocacy to demand programmatic implication and rapid generic production to bring costs down
- If we don't **demand** focus on making available biomedical prevention programs to most-affected communities, disparities will only widen
 - This is UNACCEPTABLE

Thank you!

Questions? rlandovitz@mednet.ucla.edu