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• Inference:  Statistical vs. Causal 
distinctions and mental barriers

• Formal semantics for counterfactuals:
definition, axioms, graphical representations

• Inference to three types of claims:
1. Effect of potential interventions
2. Attribution (Causes of Effects)
3. Direct and indirect effects

OUTLINE



TRADITIONAL STATISTICAL
INFERENCE PARADIGM

Data

Inference

Q(P)
(Aspects of P)

P
Joint

Distribution

e.g.,
Infer whether customers who bought product A
would also buy product B.
Q = P(B | A)



What happens when P changes?
e.g.,
Infer whether customers who bought product A
would still buy A if we were to double the price.

FROM STATISTICAL TO CAUSAL ANALYSIS:
1.  THE DIFFERENCES

Probability and statistics deal with static relations

Data

Inference
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change



FROM STATISTICAL TO CAUSAL ANALYSIS:
1.  THE DIFFERENCES

Note:  P′ (v) ≠
 

P (v | price = 2)
P does not tell us how it ought to change
e.g. Curing symptoms vs. curing diseases
e.g. Analogy: mechanical deformation

What remains invariant when P changes say, to satisfy 
P′ (price=2)=1

Data

Inference

Q(P′)
(Aspects of P′)

P′
Joint 

Distribution

P
Joint

Distribution
change



2.

3.

4.

FROM STATISTICAL TO CAUSAL ANALYSIS:
1.  THE DIFFERENCES (CONT)

CAUSAL
Spurious correlation
Randomization
Confounding / Effect
Instrument
Holding constant
Explanatory variables

STATISTICAL
Regression
Association / Independence
“Controlling for” / Conditioning
Odd and risk ratios
Collapsibility
Propensity score

1. Causal and statistical concepts do not mix.



4.

CAUSAL
Spurious correlation
Randomization
Confounding / Effect
Instrument
Holding constant
Explanatory variables

STATISTICAL
Regression
Association / Independence
“Controlling for” / Conditioning
Odd and risk ratios
Collapsibility
Propensity score

1. Causal and statistical concepts do not mix.

3. Causal assumptions cannot be expressed in the mathematical 
language of standard statistics.

FROM STATISTICAL TO CAUSAL ANALYSIS:
2.  MENTAL BARRIERS

2. No causes in – no causes out (Cartwright, 1989)
statistical assumptions + data
causal assumptions causal conclusions⇒}



4. Non-standard mathematics:
a) Structural equation models (Wright, 1920; Simon, 1960)
b) Counterfactuals (Neyman-Rubin (Yx), Lewis (x Y))

CAUSAL
Spurious correlation
Randomization
Confounding / Effect
Instrument
Holding constant
Explanatory variables

STATISTICAL
Regression
Association / Independence
“Controlling for” / Conditioning
Odd and risk ratios
Collapsibility
Propensity score

1. Causal and statistical concepts do not mix.

3. Causal assumptions cannot be expressed in the mathematical 
language of standard statistics.

FROM STATISTICAL TO CAUSAL ANALYSIS:
2.  MENTAL BARRIERS

2. No causes in – no causes out (Cartwright, 1989)
statistical assumptions + data
causal assumptions causal conclusions⇒}



Y = 2X

WHY CAUSALITY NEEDS 
SPECIAL MATHEMATICS

Had X been 3, Y would be 6.
If we raise X to 3, Y would be 6.
Must “wipe out” X = 1.

X = 1
Y = 2

The solutionProcess information

Y := 2X

Correct notation:

X = 1

e.g., Pricing Policy:  “Double the competitor’s price”

Scientific Equations (e.g., Hooke’s Law) are non-algebraic



Y ← 2X
(or)

WHY CAUSALITY NEEDS 
SPECIAL MATHEMATICS

Process information

Had X been 3, Y would be 6.
If we raise X to 3, Y would be 6.
Must “wipe out” X = 1.

Correct notation:

X = 1

e.g., Pricing Policy:  “Double the competitor’s price”

X = 1
Y = 2

The solution

Scientific Equations (e.g., Hooke’s Law) are non-algebraic



Data

Inference

Q(M)
(Aspects of M)

Data 
Generating

Model

M – Invariant strategy (mechanism, recipe, law, 
protocol) by which Nature assigns values to 
variables in the analysis.

Joint
Distribution

THE STRUCTURAL MODEL
PARADIGM

M



Z

YX

INPUT OUTPUT

FAMILIAR CAUSAL MODEL
ORACLE FOR MANIPILATION 



STRUCTURAL
CAUSAL MODELS

Definition: A structural causal model is a 4-tuple
〈V,U, F, P(u)〉, where
• V = {V1 ,...,Vn } are observable variables
• U = {U1 ,...,Um } are background variables
• F = {f1 ,..., fn } are functions determining V,

vi = fi (v, u)
• P(u) is a distribution over U
P(u) and F induce a distribution P(v) over 
observable variables



STRUCTURAL MODELS AND
CAUSAL DIAGRAMS

The arguments of the functions vi = fi (v,u) define a graph
vi = fi (pai ,ui ) PAi ⊆

 
V \ Vi Ui ⊆

 
U

Example:  Price – Quantity equations in economics 
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Let X be a set of variables in V.
The action do(x) sets X to constants x regardless of
the factors which previously determined X.
do(x) replaces all functions fi determining X with the 
constant functions X=x, to create a mutilated model Mx

STRUCTURAL MODELS AND
INTERVENTION
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Let X be a set of variables in V.
The action do(x) sets X to constants x regardless of
the factors which previously determined X.
do(x) replaces all functions fi determining X with the 
constant functions X=x, to create a mutilated model Mx

STRUCTURAL MODELS AND
INTERVENTION



CAUSAL MODELS AND 
COUNTERFACTUALS

Definition:   
The sentence: “Y would be y (in situation u), had X been x,” 

denoted Yx (u) = y, means:
The solution for Y in a mutilated model Mx , (i.e., the equations 

for X replaced by X = x) with input U=u, is equal to y.

)()( uYuY xMx =

The Fundamental Equation of Counterfactuals:
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CAUSAL MODELS AND 
COUNTERFACTUALS

Definition:   
The sentence: “Y would be y (in situation u), had X been x,” 

denoted Yx (u) = y, means:
The solution for Y in a mutilated model Mx , (i.e., the equations 

for X replaced by X = x) with input U=u, is equal to y.

)()( uYuY xMx =

The Fundamental Equation of Counterfactuals:
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Joint probabilities of counterfactuals:



AXIOMS OF CAUSAL 
COUNTERFACTUALS

1. Definiteness

2. Uniqueness

3. Effectiveness

4. Composition

5. Reversibility

xuXtsXx y =∈∃ )( ..

')')((&))(( xxxuXxuX yy =⇒==

xuX xw =)(

)()()( uYuYwuW xxwx =⇒=

yuYwuWyuY xxyxw =⇒== )())((&)((

:)( yuYx = Y would be y, had X been x (in state U = u)



The problem: 
To predict the impact of a proposed intervention using 
data obtained prior to the intervention. 

The solution (conditional): 
Causal Assumptions + Data → Policy Claims

1. Mathematical tools for communicating causal 
assumptions formally and transparently.

2. Deciding (mathematically) whether the assumptions 
communicated are sufficient for obtaining consistent 
estimates of the prediction required.

3. Deriving (if (2) is affirmative) 
a closed-form expression for the predicted impact

INFERRING  THE  EFFECT 
OF  INTERVENTIONS

4. Suggesting (if (2) is negative) 
a set of measurements and experiments that, if 
performed, would render a consistent estimate feasible.



NON-PARAMETRIC
STRUCTURAL MODELS

Given P(x,y,z), should we ban smoking?

x = u1 ,
z = αx + u2 ,
y = βz + γ

 
u1 + u3 .

Find: α ⋅ β
 

Find: P(y|do(x))

x = f1 (u1 ),
z = f2 (x, u2 ),
y = f3 (z, u1 , u3 ).

Linear Analysis Nonparametric Analysis

U

X Z Y

1

U2

Smoking Tar in 
Lungs

Cancer

U3
U

X Z Y

1

U2

Smoking Tar in 
Lungs

Cancer

α β

U3
f1 f2

f3



2
f2

Given P(x,y,z), should we ban smoking?

x = u1 ,
z = αx + u2 ,
y = βz + γ

 
u1 + u3 .

Find: α ⋅ β
 

Find: P(y|do(x)) = P(Y=y) in new model

x = const.
z = f2 (x, u2 ),
y = f3 (z, u1 , u3 ).

Linear Analysis Nonparametric Analysis

U

X = x Z Y

1

U

Smoking Tar in 
Lungs

Cancer

U3
U

X Z Y

1

U2

Smoking Tar in 
Lungs

Cancer

α β

U3
f3

EFFECT  OF  INTERVENTION
AN  EXAMPLE

Δ
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EFFECT  OF  INTERVENTION
AN  EXAMPLE  (cont)

U   (unobserved)

X = x Z Y
Smoking Tar in 

Lungs
Cancer

U   (unobserved)

X Z Y
Smoking Tar in 

Lungs
Cancer

Given P(x,y,z), should we ban smoking?
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EFFECT  OF  INTERVENTION
AN  EXAMPLE  (cont)

U   (unobserved)

X = x Z Y
Smoking Tar in 

Lungs
Cancer

U   (unobserved)

X Z Y
Smoking Tar in 

Lungs
Cancer

Given P(x,y,z), should we ban smoking?

Pre-intervention Post-intervention
∑=
u
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uzyPxzPuPxdozyP ),|()|()())(|,(



EFFECT  OF  INTERVENTION
AN  EXAMPLE  (cont)

U   (unobserved)

X = x Z Y
Smoking Tar in 

Lungs
Cancer

U   (unobserved)

X Z Y
Smoking Tar in 

Lungs
Cancer

Given P(x,y,z), should we ban smoking?

Pre-intervention Post-intervention
∑=
u

uzyPxzPuxPuPzyxP ),|()|()|()(),,( ∑=
u

uzyPxzPuPxdozyP ),|()|()())(|,(

To compute P(y,z|do(x)), we must eliminate u.  (graphical problem).



ELIMINATING CONFOUNDING BIAS
A GRAPHICAL CRITERION

P(y | do(x)) is estimable if there is a set Z of
variables such that Z d-separates X from Y in Gx .

Z6

Z3

Z2

Z5

Z1

X Y

Z4

Z6

Z3

Z2

Z5

Z1

X Y

Z4

Z

Moreover, P(y | do(x)) = ∑
 

P(y | x,z) P(z)
(“adjusting” for Z) z

GxG



RULES  OF  CAUSAL  CALCULUSRULES  OF  CAUSAL  CALCULUS

Rule 1: Ignoring observations
P(y | do{x}, z, w) = P(y | do{x}, w)

Rule 2: Action/observation exchange
 P(y | do{x}, do{z}, w) = P(y | do{x},z,w)

Rule 3: Ignoring actions
 P(y | do{x}, do{z}, w) = P(y | do{x}, w)

XGZ|X,WY )( ⊥⊥  if

Z(W)XGZ|X,WY )⊥⊥(  if

ZXGZ|X,WY )(  if ⊥⊥



DERIVATION  IN  CAUSAL  CALCULUS

Smoking Tar Cancer

P (c | do{s}) = Σt P (c | do{s}, t) P (t | do{s})

= Σs′ Σt P (c | do{t}, s′)  P (s′

 

| do{t}) P(t |s)

= Σt P (c | do{s}, do{t}) P (t | do{s})

= Σt P (c | do{s}, do{t}) P (t | s)

= Σt P (c | do{t}) P (t | s)

= Σs′

 

Σt P (c | t, s′)  P (s′) P(t |s)

= Σs′ Σt P (c | t, s′)  P (s′

 

| do{t}) P(t |s)

Probability Axioms

Probability Axioms

Rule 2

Rule 2

Rule 3

Rule 3

Rule 2

Genotype  (Unobserved)



INFERENCE  ACROSS  
DESIGNS

Problem:
Predict P(y | do(x)) from a study in which 

only Z can be controlled.

Solution:
Determine if P(y | do(x)) can be reduced 

to a mathematical expression involving 
only do(z).



• do-calculus is complete

• Complete graphical criterion for identifying 
causal effects (Shpitser and Pearl, 2006).

• Complete graphical criterion for empirical 
testability of counterfactuals 
(Shpitser and Pearl, 2007).

COMPLETENESS  RESULTS  
ON  IDENTIFICATION



From Hoover (2004) 
“Lost Causes”

THE  CAUSAL  RENAISSANCE:  
VOCABULARY  IN  ECONOMICS

From Hoover (2004) 
“Lost Causes”



THE  CAUSAL  RENAISSANCE:
USEFUL  RESULTS

1. Complete formal semantics of counterfactuals
2. Transparent language for expressing assumptions
3. Complete solution to causal-effect identification
4. Legal responsibility (bounds)
5. Imperfect experiments (universal bounds for IV)
6. Integration of data from diverse sources
7. Direct and Indirect effects,
8. Complete criterion for counterfactual testability
7. Direct and Indirect effects,



•

DETERMINING THE CAUSES OF EFFECTS
(The Attribution Problem)

• Your Honor! My client (Mr. A) died BECAUSE 
he used that drug.



DETERMINING THE CAUSES OF EFFECTS
(The Attribution Problem)

• Your Honor! My client (Mr. A) died BECAUSE 
he used that drug.

• Court to decide if it is MORE PROBABLE THAN
NOT that A would be alive BUT FOR the drug! 

P(? | A is dead, took the drug) > 0.50PN =



•

THE PROBLEM

Semantical Problem:

1. What is the meaning of PN(x,y):
“Probability that event y would not have occurred if 
it were not for event x, given that x and y did in fact 
occur.”



THE PROBLEM

Semantical Problem:

1. What is the meaning of PN(x,y):
“Probability that event y would not have occurred if 
it were not for event x, given that x and y did in fact 
occur.”

Answer:

Computable from M

),|'(),( ' yxyYPyxPN x ==



THE PROBLEM

Semantical Problem:

1. What is the meaning of PN(x,y):
“Probability that event y would not have occurred if 
it were not for event x, given that x and y did in fact 
occur.”

2. Under what condition can PN(x,y) be learned from 
statistical data, i.e., observational, experimental 
and combined.

Analytical Problem:



TYPICAL THEOREMS
(Tian and Pearl, 2000)

• Bounds given combined nonexperimental and 
experimental data
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• Identifiability under monotonicity (Combined data)

corrected Excess-Risk-Ratio



CAN FREQUENCY DATA DECIDE CAN FREQUENCY DATA DECIDE 
LEGAL RESPONSIBILITY?LEGAL RESPONSIBILITY?

• Nonexperimental data: drug usage predicts longer life
• Experimental data: drug has negligible effect on survival

Experimental Nonexperimental
do(x) do(x′) x x′

Deaths (y) 16 14 2 28
Survivals (y′) 984 986 998 972

1,000 1,000 1,000 1,000

1. He actually died
2. He used the drug by choice

500.),|'( ' >==Δ yxyYPPN x

• Court to decide (given both data): 
Is it more probable than not that A would be alive 
but for the drug?

• Plaintiff: Mr. A is special.



SOLUTION TO THE 
ATTRIBUTION PROBLEM

• WITH PROBABILITY ONE  1 ≤
 

P(y′x′

 

| x,y)  ≤
 

1

• Combined data tell more that each study alone



EFFECT  DECOMPOSITION
(direct vs. indirect effects)

1. Why decompose effects?

2. What is the semantics of direct and indirect 
effects?

3. What are the policy implications of direct and 
indirect effects?

4. When can direct and indirect effect be 
estimated consistently from experimental and 
nonexperimental data?



WHY  DECOMPOSE  EFFECTS?

1. To understand how Nature works

2. To comply with legal requirements 

3. To predict the effects of new type of interventions: 

Signal routing, rather than variable fixing



X Z

Y

LEGAL  IMPLICATIONS
OF  DIRECT  EFFECT

What is the direct effect of X on Y ?

(averaged over z)
))(),(())(),( 01 zdoxdoYEzdoxdoYE ||( −

(Qualifications)

(Hiring)

(Gender)

Can data prove an employer guilty of hiring discrimination?

Adjust for Z?  No! No!



z = f (x, u)
y = g (x, z, u)

X Z

Y

NATURAL  SEMANTICS  OF
AVERAGE  DIRECT  EFFECTS

Average Direct Effect of X on Y:
The expected change in Y, when we change X from x0 to 
x1 and, for each u, we keep Z constant at whatever value it 
attained before the change.

In linear models, DE = Controlled Direct Effect

][ 001 xZx YYE x −

);,( 10 YxxDE

Robins and Greenland (1992) – “Pure”



SEMANTICS AND IDENTIFICATION 
OF NESTED COUNTERFACTUALS

Consider the quantity

Given 〈M, P(u)〉, Q is well defined

Given u, Zx* (u) is the solution for Z in Mx* , call it z
is the solution for Y in Mxz

Can Q be estimated from                                 data?

Experimental: nest-free expression
Nonexperimental: subscript-free expression

)]([ )(*
uYEQ uxZxu=Δ

⎭
⎬
⎫

⎩
⎨
⎧

entalnonexperim
alexperiment

)()(*
uY uxZx



z = f (x, u)
y = g (x, z, u)

X Z

Y

NATURAL  SEMANTICS  OF
INDIRECT  EFFECTS

Indirect Effect of X on Y:
The expected change in Y when we keep X constant, say 
at x0 , and let Z change to whatever value it would have 
attained had X changed to x1 . 

In linear models, IE = TE - DE

][ 010 xZx YYE x −

);,( 10 YxxIE



POLICY  IMPLICATIONS  
OF  INDIRECT  EFFECTS

f

GENDER QUALIFICATION

HIRING

What is the indirect effect of X on Y?

The effect of Gender on Hiring if sex discrimination
is eliminated.

X Z

Y

IGNORE

Blocking a link – a new type of intervention



Theorem 5:  The total, direct and indirect effects obey
The following equality

In words, the total effect (on Y) associated with the 
transition from x* to x is equal to the difference 
between the direct effect associated with this transition 
and the indirect effect associated with the reverse 
transition, from x to x*.

RELATIONS BETWEEN TOTAL, 
DIRECT, AND INDIRECT EFFECTS

);*,()*;,()*;,( YxxIEYxxDEYxxTE −=



Is identifiable from experimental data and is given by

Theorem: If there exists a set W such that

EXPERIMENTAL  IDENTIFICATION
OF  AVERAGE  DIRECT  EFFECTS

[ ]∑ =−=
zw xzxxz wPwzZPwYEwYEYxxDE

, ** )()()()()*;,( |||

Then the average direct effect

( ) ( )        )(,*;, ** xZx YEYEYxxDE x −=

xzWZY xxz and  allfor |*⊥⊥



Example:

Theorem: If there exists a set W such that

GRAPHICAL  CONDITION FOR 
EXPERIMENTAL  IDENTIFICATION 

OF  DIRECT  EFFECTS

[ ]∑ =−=
zw xzxxz wPwzZPwYEwYEYxxDE

, ** )()|()|()|()*;,(

)()|( ZXNDWWZY XZG ∪⊆⊥⊥  and 
then,



Y

Z

X

W

x*

z* = Zx* (u)

Nonidentifiable even in Markovian models

GENERAL PATH-SPECIFIC
EFFECTS (Def.)

)),(*),(();,(* ugpagpafgupaf iiiii =

*);,();,( **
gMMg YxxTEYxxE =

Y

Z

X

W

Form a new model,      , specific to active subgraph g*gM

Definition: g-specific effect



SUMMARY OF RESULTS

1. Formal semantics of path-specific effects, 
based on signal blocking, instead of value 
fixing.

2. Path-analytic techniques extended to 
nonlinear and nonparametric models.

3. Meaningful (graphical) conditions for 
estimating direct and indirect effects from 
experimental and nonexperimental data.



CONCLUSIONS

Structural-model semantics, enriched with logic 
and graphs, provides:

• Complete formal basis for causal and 
counterfactual reasoning

• Unifies the graphical, potential-outcome and 
structural equation approaches

• Provides friendly and formal solutions to 
century-old problems and confusions.
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