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Motivation

Why is estimating HIV incidence important?

Why is it challenging to measure?

Approaches to address the challenges
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Incidence: The expected number of new infections
per year at a given moment in time, among
those uninfected up to that point in time.
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A Public Health Necessity

Tracking and surveillance of the epidemic

Resource allocation

Prevention efforts

Sample size calculations

Selecting a target population

Evaluation
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Approaches for Estimating Incidence

Longitudinal studies

Changes in HIV prevalence

Cross-sectional studies
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Longitudinal Studies

Selection bias

Loss to follow-up

Counseling
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Changes in HIV Prevalence

Depends on immigration and emigration

Depends on the relative survival rate
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The Cross-Sectional Approach
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Seroconversion: When antibodies become detectable in the blood
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Seroconversion: When antibodies become detectable in the blood



Estimating Incidence
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X = the number of cases in the early disease stage

Nu = the number of uninfected samples

µ = the average duration individuals spend in the early
disease stage

Prevalence = Total Incidence × Mean Duration

X = NuI × µ



The Cross-Sectional Incidence Estimator
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X = NuI × µ



The Cross-Sectional Incidence Estimator
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Î = X
Nuµ



Example
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Î = X
Nuµ

Example: In the cross-sectional survey we find 1000
uninfected people and 50 people in the early disease
stage.

People spend an average of 1/2 a year in the early
disease stage.

So we have 50
1000 infections per half a year



Example
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Î = X
Nuµ

Example: In the cross-sectional survey we find 1000
uninfected people and 50 people in the early disease
stage.

People spend an average of 1/2 a year in the early
disease stage.

Or 50
1000×1/2 = 100

1000 infections per year



The Cross-Sectional Survey
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Î = X
Nuµ



The Cross-Sectional Survey
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Î = X
Nu µ



Average Time in the Early Disease Stage
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µ ≈ 1 month

µ = the average amount of time individuals spend in
the early disease stage
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Average Time in the Early Disease Stage
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µ = the average amount of time individuals spend in
the early disease stage



Stages of Disease Progression

Example: BED IgG capture enzyme immunoassay
result < 0.8 OD-n
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Estimating Historical Incidence
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Î = X
Nuµ

is estimating past, not current, incidence ψ
years before the cross-sectional survey

ψ is a weighted average of the amount of time
prevalent early disease stage cases spent in that stage
before the survey
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Estimating Historical Incidence
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Î = X
Nuµ

is estimating past, not current, incidence ψ
years before the cross-sectional survey

ψ is a weighted average of the amount of time
prevalent early disease stage cases spent in that stage
before the survey

φ(t) is the probability that persons will be in the early
disease stage t years after seroconversion

ψ =
∫∞
0 tφ(t)dt∫∞
0 φ(t)dt



µ and ψ
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µ =
∫∞

0 φ(t)dt



µ and ψ
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µ =
∫∞

0 φ(t)dt

ψ = 1
µ

∫∞
0 tφ(t)dt



Key Ideas
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The cross-sectional incidence estimator is

Î(ψ) = X
Nuµ

µ is the average duration spent in the early disease
stage

ψ is the time in the past when we estimate incidence

φ(t) is the probability that persons will be in the early
disease stage t years after seroconversion



Evaluation of Biomarkers



The BED CEIA
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For the BED CEIA µ has been repeatedly estimated to
be about 200 days

Hall et al. JAMA (2008) → United States
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For the BED CEIA µ has been repeatedly estimated to
be about 200 days

Hall et al. JAMA (2008) → United States

Hu et al. AIDS Research & Human Retroviruses
(2003) → Bangkok

Jiang et al. AIDS (2007) → China

Saphonn et al. JAIDS (2005) → Cambodia



The BED CEIA
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For the BED CEIA µ has been repeatedly estimated to
be about 200 days

Hall et al. JAMA (2008) → United States

Hu et al. AIDS Research & Human Retroviruses
(2003) → Bangkok

Jiang et al. AIDS (2007) → China

Saphonn et al. JAIDS (2005) → Cambodia

Kim et al. AIDS Research & Human Retroviruses
(2010) → sub-Saharan Africa



Controversy
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UNAIDS

“Does not recommend the BED assay for determining
HIV incidence”



Controversy
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UNAIDS

“Does not recommend the BED assay for determining
HIV incidence”

“There is evidence that [...] the BED-assay captures
not only recent infections, but also late stage HIV
infection (with or without antiretroviral therapy) when
the levels of antibodies fall.”



Data
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Collect a repository of samples with information
on seroconversion dates

Assay samples for biomarkers

Dr. Susan Eshleman and Dr. Oliver Laeyendecker



Cohort Studies

1 HIV Network for Prevention Trials (HIVNET001)

2 AIDS Link to Intravenous Experience (ALIVE)

3 Multicenter AIDS Cohort Study (MACS)

1782 samples from 709 individuals with known
seroconversion windows

Samples taken between 14 days and 8.6 years
after seroconversion
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Raw Data for the BED CEIA
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φ̂(t) for the BED CEIA

Jacob Konikoff (UCLA Biostatistics) HIV Incidence Estimation May 11th, 2015 23 / 59

µ̂ ≈ 1.5 years
ψ̂ ≈ 3 years



Better Assays
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LAg-Avidity assay: measures the avidity of
antibody binding to low concentrations of a
multi-subtype peptide derived from an
immunodominant region of gp41.

BioRad Avidity assay: measures the percentage of
antigen-binding chaotropic-treated antibody relative to
the antigen-binding of nontreated antibody.



Raw Data for the LAg Avidity assay
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φ̂(t) for the LAg Avidity assay
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µ̂ ≈ .6 years
ψ̂ ≈ 2 years



Raw Data for the BioRad Avidty
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φ̂(t) for the BioRad Avidity
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µ̂ ≈ .8 years
ψ̂ ≈ 1.6 years



Comparison of φ̂(t) Curves
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Profile Plots
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Profile Plots
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Sequential Algorithms
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Statistical Search for MAAs

We searched for the MAA with the largest µ such
that:

1 The estimated probability of being classified in
the early disease stage at 8 years after
seroconversion needed to be < 0.001.

2 None of the samples infected more than 8 years
could be found to be in the early disease stage.

3 The upper bound of the 95% CI for the shadow
needed to be less than 1 year.

4 The point estimate of the shadow, ψ̂, needed to
be less than 250 days.
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µ̂ vs. ψ̂
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µ̂ vs. ψ̂
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MAAs
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MAA1 Early Disease Stage
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MAA2 Early Disease Stage
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MAA3 Early Disease Stage
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Comparison of Estimated φ(t) Curves
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Supplemental Dataset
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4 Johns Hopkins HIV Clinical Practice Cohort

500 samples from individuals infected more than 8
years

Seroconversion times unknown



Choosing an MAA



Relative Bias

Î(ψ)−I(ψ)
I(ψ)
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Simulated Epidemics
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Bias in Epidemic A
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Bias in Epidemic B
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Bias in Epidemic D
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Sample Sizes



Sample Sizes for a Single Survey
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Goal: Estimate I with a desired level of precision

Random sample of n individuals

ρ = W/I

W = the width of the confidence interval for I



The Distribution of X
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We assume X|µ ∼ Poisson(n(1− p)Iµ)

Recall: Prevalence = Incidence × Duration

X = NuI × µ

E[Nu] = n(1− p)

n = sample size

p = HIV prevalence



Accounting for Uncertainty in µ
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X|µ ∼ Poisson(n(1− p)Iµ)



Accounting for Uncertainty in µ
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µ ∼ Gamma(k, θ)



Solving for n
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To achieve precision of ρ = W/I we solve for n in

ρ =

[
1

Beta(α/2,k,nI0(1−p0)kθ+1)] −
1

Beta(1−α/2,k,nI0(1−p0)kθ)

]
nI0(1− p0)θ



Solving for n
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To achieve precision of ρ = W/I we solve for n in

ρ =

[
1

Beta(α/2,k, nI0 (1−p0)kθ+1)]
− 1

Beta(1−α/2,k, nI0 (1−p0)kθ)

]
nI0 (1− p0)θ

The sample size is inversely proportional to the
underlying incidence

Larger sample sizes are needed to estimate smaller
incidences



Impact of the Prior for µ
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µ’s Influence on Sample Size
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Distributions of µ
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Distributions of µ
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Sample Sizes

Uninfected samples needed for a desired precision
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Consecutive Cross-Sectional Surveys

Surveys are conducted at calendar times t1 and t2 and
estimate incidences I1 and I2

Test H0 : I2/I1 = 1 against HA : I2/I1 = r > 1

Sample sizes are a function of design parameter
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s ≈ n2

n1



Sample Sizes for Successive Surveys
Needed uninfected samples at the first time point multiplied by initial incidence
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Simulated Epidemics
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Simulation Results
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Conclusions
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Cross-sectional studies measure incidence in the
past

Need to properly calibrate µ and ψ

Multiple biomarkers offer a viable solution

Account for uncertainty in µ in sample size
methods

Sample sizes can be prohibitively large



Acknowledgments

Jacob Konikoff (UCLA Biostatistics) HIV Incidence Estimation May 11th, 2015 59 / 59

ALIVE

HIVNET 001

MACS

JHHCC

Dr. Oliver Laeyendecker

Dr. Susan Eshleman

Dr. Ron Brookmeyer


