Cross-Sectional HIV Incidence Estimation: Approaches and Challenges

Jacob Konikoff

UCLA Department of Biostatistics

May 11th, 2015

- Why is estimating HIV incidence important?
- Why is it challenging to measure?
- Approaches to address the challenges

Incidence: The expected number of new infections per year at a given moment in time, among those uninfected up to that point in time. Tracking and surveillance of the epidemic

• Resource allocation

Prevention efforts

- Sample size calculations
- Selecting a target population
- Evaluation

Approaches for Estimating Incidence

- Longitudinal studies
- Changes in HIV prevalence
- Cross-sectional studies

Longitudinal Studies

- Selection bias
- Loss to follow-up
- Counseling

Changes in HIV Prevalence

- Depends on immigration and emigration
- Depends on the relative survival rate

The Cross-Sectional Approach

Seroconversion: When antibodies become detectable in the blood

The Cross-Sectional Approach

Seroconversion: When antibodies become detectable in the blood

X = the number of cases in the early disease stage

 N_u = the number of uninfected samples

 $\mu =$ the average duration individuals spend in the early disease stage

 $Prevalence = Total Incidence \times Mean Duration$

$$X = N_u I \times \mu$$

The Cross-Sectional Incidence Estimator

$X = N_u I \times \mu$

The Cross-Sectional Incidence Estimator

 $\widehat{I} = \frac{X}{N_u \mu}$

Example: In the cross-sectional survey we find 1000 uninfected people and 50 people in the early disease stage.

People spend an average of 1/2 a year in the early disease stage.

So we have $\frac{50}{1000}$ infections per half a year

 $\widehat{I} = \frac{X}{N_u \mu}$

Example: In the cross-sectional survey we find 1000 uninfected people and 50 people in the early disease stage.

People spend an average of 1/2 a year in the early disease stage.

Or
$$\frac{50}{1000 \times 1/2} = \frac{100}{1000}$$
 infections per year

The Cross-Sectional Survey

$$\hat{I} = \frac{X}{N_u \mu}$$

The Cross-Sectional Survey

 $\hat{I} = \frac{X}{N_u \mu}$

Average Time in the Early Disease Stage

 $\mu \approx 1 \ {\rm month}$

 $\mu =$ the average amount of time individuals spend in the early disease stage

Average Time in the Early Disease Stage

 $\mu \approx 1 \ {\rm month}$

 $\mu =$ the average amount of time individuals spend in the early disease stage

Average Time in the Early Disease Stage

 $\mu =$ the average amount of time individuals spend in the early disease stage

13 / 59

Stages of Disease Progression

Example: BED IgG capture enzyme immuno
assay result < 0.8 OD-n

Estimating Historical Incidence

 $\hat{I} = \frac{X}{N_u \mu}$ is estimating past, not current, incidence ψ years before the cross-sectional survey

 ψ is a weighted average of the amount of time prevalent early disease stage cases spent in that stage *before* the survey

Estimating Historical Incidence

 $\hat{I} = \frac{X}{N_u \mu}$ is estimating past, not current, incidence ψ years before the cross-sectional survey

 ψ is a weighted average of the amount of time prevalent early disease stage cases spent in that stage *before* the survey

Estimating Historical Incidence

 $\hat{I} = \frac{X}{N_u \mu}$ is estimating past, not current, incidence ψ years before the cross-sectional survey

 ψ is a weighted average of the amount of time prevalent early disease stage cases spent in that stage *before* the survey

$$\psi = \frac{\int_0^\infty t\phi(t)dt}{\int_0^\infty \phi(t)dt}$$

 $\phi(t)$ is the probability that persons will be in the early disease stage t years after sero conversion

μ and ψ

$$\mu = \int_0^\infty \phi(t) dt$$

Time

μ and ψ

$$\mu = \int_0^\infty \phi(t) dt$$

$$\psi = \frac{1}{\mu} \int_0^\infty t \phi(t) dt$$

Time

16 / 59

Key Ideas

The cross-sectional incidence estimator is

$$\hat{I}(\psi) = \frac{X}{N_u \mu}$$

 μ is the average duration spent in the early disease stage

 ψ is the time in the past when we estimate incidence

 $\phi(t)$ is the probability that persons will be in the early disease stage t years after sero conversion

Evaluation of Biomarkers

For the BED CEIA μ has been repeatedly estimated to be about 200 days

• Hall et al. JAMA (2008) \rightarrow United States

- Hall et al. JAMA (2008) \rightarrow United States
- Hu et al. AIDS Research & Human Retroviruses
 (2003) → Bangkok

- Hall et al. JAMA (2008) \rightarrow United States
- Hu et al. AIDS Research & Human Retroviruses
 (2003) → Bangkok
- Jiang et al. $AIDS (2007) \rightarrow China$

- Hall et al. JAMA (2008) \rightarrow United States
- Hu et al. AIDS Research & Human Retroviruses
 (2003) → Bangkok
- Jiang et al. $AIDS (2007) \rightarrow China$
- Saphonn et al. $JAIDS (2005) \rightarrow Cambodia$

- Hall et al. JAMA (2008) \rightarrow United States
- Hu et al. AIDS Research & Human Retroviruses
 (2003) → Bangkok
- Jiang et al. $AIDS (2007) \rightarrow China$
- Saphonn et al. JAIDS (2005) \rightarrow Cambodia
- Kim et al. AIDS Research & Human Retroviruses
 (2010) → sub-Saharan Africa

UNAIDS

"Does not recommend the BED assay for determining HIV incidence"

UNAIDS

"Does not recommend the BED assay for determining HIV incidence"

"There is evidence that [...] the BED-assay captures not only recent infections, but also late stage HIV infection (with or without antiretroviral therapy) when the levels of antibodies fall."

- Collect a repository of samples with information on seroconversion dates
- Assay samples for biomarkers

Dr. Susan Eshleman and Dr. Oliver Laeyendecker

• HIV Network for Prevention Trials (HIVNET001)

- **2** AIDS Link to Intravenous Experience (ALIVE)
- Multicenter AIDS Cohort Study (MACS)
 - 1782 samples from 709 individuals with known seroconversion windows
 - Samples taken between 14 days and 8.6 years after sero conversion
Raw Data for the BED CEIA

$\widehat{\phi}(t)$ for the BED CEIA

 $\hat{\mu} \approx 1.5$ years $\hat{\psi} \approx 3$ years

LAg-Avidity assay: measures the avidity of antibody binding to low concentrations of a multi-subtype peptide derived from an immunodominant region of gp41.

BioRad Avidity assay: measures the percentage of antigen-binding chaotropic-treated antibody relative to the antigen-binding of nontreated antibody.

Raw Data for the LAg Avidity assay

$\widehat{\phi}(t)$ for the LAg Avidity assay

 $\hat{\mu} \approx .6$ years $\hat{\psi} \approx 2$ years

Raw Data for the BioRad Avidty

$\widehat{\phi}(t)$ for the BioRad Avidity

 $\hat{\mu} \approx .8$ years $\hat{\psi} \approx 1.6$ years

Comparison of $\widehat{\phi}(t)$ Curves

Profile Plots

Profile Plots

Sequential Algorithms

Jacob Konikoff (UCLA Biostatistics)

Statistical Search for MAAs

We searched for the MAA with the largest μ such that:

- The estimated probability of being classified in the early disease stage at 8 years after seroconversion needed to be < 0.001.</p>
- None of the samples infected more than 8 years could be found to be in the early disease stage.
- The upper bound of the 95% CI for the shadow needed to be less than 1 year.
- The point estimate of the shadow, $\hat{\psi}$, needed to be less than 250 days.

 $\hat{\mu}$ vs. $\underline{\psi}$

Jacob Konikoff (UCLA Biostatistics) HIV Incidence Estimation

 $\hat{\mu}$ vs. ψ

MAAs

MAA1 Early Disease Stage

MAA2 Early Disease Stage

Jacob Konikoff (UCLA Biostatistics) HIV Incidence Estimation

May 11th, 2015

37 / 59

MAA3 Early Disease Stage

LAg Avidity

Comparison of Estimated $\phi(t)$ Curves

Supplemental Dataset

- Johns Hopkins HIV Clinical Practice Cohort
 - 500 samples from individuals infected more than 8 years
 - Seroconversion times unknown

Choosing an MAA

Relative Bias

 $\hat{I}(\psi) - I(\psi)$ $I(\psi)$

Simulated Epidemics

Bias in Epidemic A

Bias in Epidemic B

Bias in Epidemic D

Sample Sizes

Sample Sizes for a Single Survey

Goal: Estimate I with a desired level of precision

Random sample of n individuals

 $\rho = W/I$

W = the width of the confidence interval for I

The Distribution of X

We assume $X|\mu \sim \text{Poisson}(n(1-p)I\mu)$

Recall: Prevalence = Incidence \times Duration

$$X = N_u I \times \mu$$

$$E[N_u] = n(1-p)$$

n = sample size

p = HIV prevalence

Accounting for Uncertainty in μ

Accounting for Uncertainty in μ

To achieve precision of $\rho = W/I$ we solve for n in

$$\rho = \frac{\left[\frac{1}{\text{Beta}(\alpha/2,k,nI^{0}(1-p^{0})k\theta+1)\right]} - \frac{1}{\text{Beta}(1-\alpha/2,k,nI^{0}(1-p^{0})k\theta)}\right]}{nI^{0}(1-p^{0})\theta}$$

To achieve precision of $\rho = W/I$ we solve for n in

$$\rho = \frac{\left[\frac{1}{\text{Beta}(\alpha/2,k, nI^0(1-p^0)k\theta+1)]} - \frac{1}{\text{Beta}(1-\alpha/2,k, nI^0(1-p^0)k\theta)}\right]}{nI^0(1-p^0)\theta}$$

The sample size is inversely proportional to the underlying incidence

Larger sample sizes are needed to estimate smaller incidences

Impact of the Prior for μ

Jacob Konikoff (UCLA Biostatistics) HIV Incidence Estimation

Estimation May 1

μ 's Influence on Sample Size

Distributions of $\mu_{\rm I}$

Distributions of $\mu_{\rm I}$

$\overline{I_c}$	W/I _c						
	0.50	1	1.5	2	2.5	3	3.5
0.25%	141,895	20,768	9,115	5,338	3,602	2,648	2,060
0.50%	70,948	10,384	4,558	2,669	1,801	1,324	1,030
1.00%	$35,\!474$	5,192	$2,\!279$	1,335	901	662	515
1.50%	$23,\!650$	3,462	1,520	890	601	442	344
2.00%	17,737	$2,\!596$	$1,\!140$	668	451	331	258
2.50%	$14,\!190$	2,077	912	534	361	265	206
3.00%	$11,\!825$	1,731	760	445	301	221	172
4.00%	8,869	$1,\!298$	570	334	226	166	129
5.00%	7,095	1,039	456	267	181	133	103

Uninfected samples needed for a desired precision

Surveys are conducted at calendar times t_1 and t_2 and estimate incidences I_1 and I_2

Test $H_0: I_2/I_1 = 1$ against $H_A: I_2/I_1 = r > 1$

Sample sizes are a function of design parameter

 $s \approx \frac{n_2}{n_1}$

Sample Sizes for Successive Surveys

Needed uninfected samples at the first time point multiplied by initial incidence

	r = 1.2	r = 1.5	r = 2	r = 3	r = 5
s = 2					
i	898.7 (2696.0)	166.4 (499.0)	50.5(151.5)	17.0(50.8)	6.2(18.6)
ii	907.7 (2723.1)	168.2(504.5)	51.1 (153.2)	17.2(51.4)	6.3(18.8)
iii	$1049.0 \ (3147.0)$	195.2 (585.6)	59.6(178.7)	20.2(60.4)	7.5(22.3)
iv	442.8(1328.2)	82.0(246.0)	24.9(74.7)	8.4(25.1)	3.1 (9.2)
s = 1					
i	$1196.6\ (2393.1)$	221.2 (442.3)	67.4(134.8)	22.2(44.4)	8.2(16.3)
ii	1208.8 (2417.5)	223.5(447.0)	68.1 (136.2)	22.5(44.9)	8.3(16.5)
iii	$1396.2\ (2792.3)$	259.2(518.4)	$79.0\ (158.0)$	26.3(52.6)	9.8(19.6)
iv	$589.6\ (1179.1)$	$109.0\ (218.0)$	33.2(66.4)	11.0(21.9)	4.1 (8.1)
$s = \frac{1}{2}$					
ī	$1793.3\ (2689.9)$	$331.1 \ (496.6)$	$100.4\ (150.6)$	33.8(50.6)	12.1(18.1)
ii	$1811.0\ (2716.5)$	334.3 (501.5)	$101.5\ (152.2)$	34.1(51.1)	12.2(18.3)
iii	2090.3 (3135.4)	386.6(579.8)	117.7 (176.5)	39.3(59.0)	14.1(21.1)
iv	$883.4\ (1325.1)$	$163.1 \ (244.7)$	49.5(74.2)	16.7(25.0)	6.0(8.9)

Jacob Konikoff (UCLA Biostatistics)

55 / 59

Simulated Epidemics

	True Incidence	ASI	CI coverage	Power	u
(1)					
Epidemic A	0.80% and $0.30%$	0.80% and $0.29%$	0.94 and 0.92	0.92	9,984
Epidemic B	0.41% and $1.08%$	0.42% and $1.05%$	0.95 and 0.95	0.87	7,595
Epidemic C	0.66% and $1.01%$	0.65% and $1.01%$	0.95 and 0.95	0.90	$29,\!557$
Epidemic D	0.21% and $0.94%$	0.22% and $0.96%$	0.91 and 0.96	0.90	4,848
(2)					
Epidemic A	0.65% and $0.30%$	0.64% and $0.29%$	0.95 and 0.92	0.92	17,920
Epidemic B	0.62% and $1.08%$	0.65% and $1.05%$	0.96 and 0.94	0.82	18,383
Epidemic C	0.83% and $1.01%$	0.83% and $1.01%$	0.95 and 0.95	0.90	$123,\!545$
Epidemic D	0.45% and $0.94%$	0.45% and $0.96%$	0.95 and 0.96	0.90	12,960
Epidemic D	0.45% and $0.94%$	0.45% and $0.96%$	0.95 and 0.96	0.90	12,960

Conclusions

- Cross-sectional studies measure incidence in the past
- Need to properly calibrate μ and ψ
- Multiple biomarkers offer a viable solution
- Account for uncertainty in μ in sample size methods
- Sample sizes can be prohibitively large

Acknowledgments

- ALIVE
- HIVNET 001
- MACS
- JHHCC
- Dr. Oliver Laeyendecker
- Dr. Susan Eshleman
- Dr. Ron Brookmeyer

