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Overview
• What is IPTW?

•Why do I want to use it?

•How does it work?

•How do I do it?



Notation
Keeping it as simple as possible:

X = treatment/exposure

Y = outcome

C = set of confounder variables C1, C2, C3…Cn
◦ At least 1, but possibly many more



Definition of confounder
C is a confounder if…

• It is causally related to X and (at least) correlated with Y
OR
• It is causally related to Y and correlated with X

AND
• It is not part of the causal pathway between X and Y (it is not a 

mediator)



What is IPTW?
Weighting-based method of confounder control: Transforms study 
sample into one in which confounders are balanced across 
treatment/exposure groups

Two-stage analysis
◦ Association between confounders and treatment/exposure
◦ Association between treatment and outcome 

“Marginal” outcome model
◦ E(Y|X) instead of E(Y|X,C)



What IPTW is NOT

IPTW is NOT more valid than multiple regression

IPTW is NOT a solution to missing confounder data

IPTW is NOT more efficient than multiple regression (usually)



Where is IPTW useful?
High number of covariates AND
◦ Low number of events/stratum
◦ Bad distribution of Y

If you are more comfortable estimating the relationship between C 
and X than C and Y, consider IPTW

If you want your paper to be more likely to be accepted…consider 
IPTW



How does IPTW work?

In an IPTW population, treatment/exposure groups are balanced on 
covariates used to create the weights
◦ Importantly, they are NOT balanced on variables NOT used in the IPTW 

estimation (this is not an RCT)

If these variables are balanced, they are independent from 
treatment, and cannot confound the X-Y relationship



Observed data
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C

X Y

C
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X and C are statistically independent if 
f(x|c) = f(x) 
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Definition of IPTW

𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼 = 𝑃𝑃(𝑋𝑋=𝑥𝑥)
𝑃𝑃(𝑋𝑋=𝑥𝑥|𝐶𝐶)

With a binary treatment or exposure,

𝑃𝑃(𝑋𝑋=1)
𝑃𝑃(𝑋𝑋=1|𝐶𝐶)

if treated 𝑃𝑃(𝑋𝑋=0)
𝑃𝑃(𝑋𝑋=0|𝐶𝐶)

if control



How to obtain P(X = 1)

Frequency table(x)

*Will be constant across observations

Treated Not treated
N, % N, %



How to obtain P(X = 1|C)

1: Logistic Regression(x = c) 

2: Output predicted values on probability scale, or output on log odds 
scale and transform with expit function 𝑒𝑒𝑒𝑒𝑒𝑒(log odds)

(𝑒𝑒𝑒𝑒𝑒𝑒(log odds)+1)

*Will be different for observations with different values of C

*This is a propensity score



How to obtain numerator and 
denominator
IPTW = conditional variable: 
◦ If treated: 
◦ Numerator = P(X = 1) 
◦ Denominator = P(X = 1|C)

◦ If not treated: 
◦ Numerator = 1 - P(X = 1) 
◦ Denominator = 1 – P(X = 1|C)



How to evaluate quality of weights

1. ALWAYS run a summary of the weight variable
◦ The mean of the weights should be close to 1
◦ Consider trimming observations with very large or very small weights 



Evaluating weights

Look at a histogram of P(X = 
1|C)*, split by treatment 
group:

*fitted values from the logistic 
regression



Evaluating weights

Compute a measure of 
balance (e.g. the 
standardized mean 
difference) in each 
confounder variable 
before and after 
weighting:



Evaluating weights

Compare “Table 1” p values before and after weighting

*Looking at effect sizes is better, but this can be informative



IPTW estimation and evaluation is an 
iterative process

Estimate 
weights

Assess 
Balance



Fitting outcome model
Regression(y = x, weights = IPTW)

BUT

You must correct the standard error!
◦ Use a “survey” analysis procedure
◦ Use a tool for robust SE estimation (e.g. the sandwich estimator)
◦ Bootstrap: best option because it accounts for the fact that the IPTW 

themselves are not known and add additional uncertainty to the analysis



Example – smoking and lung cancer
smk lc c1 c2 c3

0 0 0 0 0
0 0 0 0 0
0 0 0 0 1
1 1 0 0 0
0 0 0 0 0
1 1 0 0 0

True ORsmk = 2.7 Biased ORsmk = 3.6



Step 1: Obtain P(X = 1)

prop.table(table(df$smk))

0      1 
0.4249 0.5751

smk lc c1 c2 c3 px
0 0 0 0 0 0.5751
0 0 0 0 0 0.5751
0 0 0 0 1 0.5751
1 1 0 0 0 0.5751
0 0 0 0 0 0.5751
1 1 0 0 0 0.5751



Step 2: Obtain P(X = 1|C)
pxc <- fitted(glm(smk ~ c1 + c2 + c3, family = "binomial"))

smk lc c1 c2 c3 px pxc
0 0 0 0 0 0.5751 0.533
0 0 0 0 0 0.5751 0.533
0 0 0 0 1 0.5751 0.138
1 1 0 0 0 0.5751 0.533
0 0 0 0 0 0.5751 0.533
1 1 1 0 0 0.5751 0.741



Step 3: Create IPTW
df$iptw <- ifelse(df$smk == 1, df$px/df$pxc, (1-df$px)/(1-df$pxc))

smk lc c1 c2 c3 px pxc iptw
0 0 0 0 0 0.5751 0.533 0.909
0 0 0 0 0 0.5751 0.533 0.909
0 0 0 0 1 0.5751 0.138 0.493
1 1 0 0 0 0.5751 0.533 1.08
0 0 0 0 0 0.5751 0.533 0.909
1 1 1 0 0 0.5751 0.741 0.776



Step 4: Diagnostics

summary(df$iptw)
Min. 1st Qu.  Median  Mean 3rd Qu.    Max. 

0.4929  0.7761  0.9099  0.9991 1.0790  4.1674



Step 5: Outcome model
svydes <- svydesign(id ~ 1, weights = ~iptw, data = df)
mod <- svyglm(lc ~ smk, design = svydes, family = "binomial")
summary(mod)

Coefficients:
Estimate Std. Error t value Pr(>|t|)    

(Intercept)  0.24452    0.03289   7.434 1.14e-13 ***
smk 0.99069 0.04942  20.047  < 2e-16 ***

ORsmk = 2.7



IPTW vs. Multiple regression
Coefficients:

Estimate Std. Error t value Pr(>|t|)    
(Intercept)  0.24452    0.03289   7.434  1.14e-13 ***
smk 0.99069    0.04942  20.047  < 2e-16 ***

Coefficients:
Estimate Std. Error z value Pr(>|z|)    

(Intercept)  0.03924    0.03665   1.071    0.284    
smk 1.03826    0.04753  21.846   <2e-16 ***
c1           0.48533    0.05358   9.059   <2e-16 ***
c2           0.93259    0.06647  14.030   <2e-16 ***
c3          -0.93734    0.07320 -12.805   <2e-16 ***

IPTW

Multiple
Regression



R code
1. px <- prop.table(table(df$x))[2]

2. pxc <- fitted(glm(x ~ c, data = df, family = “binomial”))

3. df$IPTW <- ifelse(df$x == 1, px/pxc, (1-px)/(1-pxc))
4. summary(df$IPTW)

5. svydes <- svydesign(id ~ 1, weights = ~IPTW, data = df)

6. mod <- svyglm(y ~ x, design = svydes, family = “gaussian”)



SAS “code”
1. Proc freq; table x; 

◦ Output the percent treated to a new dataset, remember it, or save it as a macro variable.

2. In data step, create variable px = percent treated (same for everybody)

3. Proc logistic; model x = c; output pred = pxc; 

4. Merge pxc into dataset

5. In data step, create variable 
◦ if x = 1 then IPTW = px/pxc
◦ else if x = 0 then IPTW = (1-px)/(1-pxc)

6. Proc summary on IPTW

7. Proc genmod; class x; model y = x; weight = IPTW;



Details and extensions
The numerator, P(X = x) is actually not necessary for bias reduction

IPTW may be estimated as                        , known as the “unstabilized” 
version

These are less efficient and I see no reason to exclude the numerator

1
𝑃𝑃(𝑋𝑋=𝑥𝑥|𝐶𝐶)



Extensions
Formula presented estimates the ATE, the “average treatment effect”
◦ What reduction in MI rates would we expect to see if we gave everyone in our population 

statins as opposed to giving everyone in our population placebo

ATT = average treatment effect among the treated
◦ Among those receiving statins, what reduction in MI rates are actually attributable to statins?
◦ If treated, IPTW = 1

◦ In untreated, IPTW = 𝑃𝑃 𝑋𝑋=1 𝐶𝐶)
𝑃𝑃 𝑋𝑋=0 𝐶𝐶)

∗ 𝑃𝑃(𝑋𝑋=0)
𝑃𝑃(𝑋𝑋=1)

ATU = average treatment effect among the untreated



Extensions
Treatment with >2 categories

◦ 𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼 = 𝑃𝑃(𝑋𝑋=𝑥𝑥)
𝑃𝑃(𝑋𝑋=𝑥𝑥|𝐶𝐶)

for x ϵ {0,1, 2, …. n}

◦Use multinomial logistic regression to estimate P(X=x|C)



Extensions
Multiple treatments X and Z (interaction analysis)

𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼 = 𝑃𝑃(𝑋𝑋=𝑥𝑥)
𝑃𝑃(𝑋𝑋=𝑥𝑥|𝐶𝐶1)

∗ 𝑃𝑃 𝑍𝑍=𝑧𝑧
𝑃𝑃 𝑍𝑍 = 𝑧𝑧 𝐶𝐶2

= 𝑃𝑃 𝑋𝑋=𝑥𝑥 𝑃𝑃(𝑍𝑍=𝑧𝑧)
𝑃𝑃 𝑋𝑋 = 𝑥𝑥 𝐶𝐶1 𝑃𝑃(𝑍𝑍=𝑧𝑧|𝐶𝐶2)

C1 and C2 can be the same set or different



More

Epi 204, 211, 212 – Onyebuchi Arah
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