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Bayesian Statistics

What Exactly is Bayesian Statistics?

A philosophy of statistics.
A generalization of classical statistics.
An approach to statistics that explicitly incorporates expert
knowledge in modeling data.
A language to talk about statistical models and expert knowledge.
An approach that allows complex models and explains why they
are helpful.
A different method for fitting models.
An easier approach to statistics.
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Prior to Posterior
Bayes Theorem

Prior – which parameter values you think are likely and unlikely.
Collect data.
Data gives us Likelihood – which parameter values the data
consider likely
Update prior to
Posterior – what values you think are likely and unlikely given prior
info and data.
Prior and posterior are both probability distributions
Bayes Theorem:

Posterior = c ∗ Prior ∗ Data Likelihood (1)
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Prior Distributions

Prior: Probability distribution summarize beliefs about the
unknown parameters prior to seeing the data.
In practice: a combination of expert knowledge and practical
choices.
Priors can be specified by

I A point estimate (My systolic blood pressure is around 123), and
I A measure of uncertainty (I might be in error by 3 points).
I (Is that a maximal error, an SD, or perhaps 2∗SD? ) Need to decide

(1 SD). And,
I A practical choice about the density: normal distribution.
I N(123,32).
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Bayesian Inference
From Before the Data to After the Data

Data is random before you see it, both classical and Bayesian
statistics.
After you see data, it is fixed in Bayesian statistics (not classical).
Uncertainty in parameter values is quantified by probability
distributions.
Parameters have distributions before you see the data [Prior
distribution].
Parameters have updated distributions after you see the data
[Posterior distribution].
The conclusion of an analysis is a posterior distribution.
Point estimates, sds, 95% CIs: summaries of the posterior
distribution.
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Interpreting the Prior
Five Data Points

123 is the value I find most likely.
3 is my assessment of the standard deviation.
123 ± 3 is (120,126) is about a 68% interval.
(117,129) is I expect my true blood pressure to fall in this interval
95% of the time.
That 68% or 95% would be over all prior intervals that I specify for
various quantities.
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Collecting My Data
From CVS and from Kaiser

I went into Rite-Aid and took 5 measurements in a row.
Measures were: 125, 126, 112, 120, 116.
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Collecting My Data
From CVS and from Kaiser

I went into Rite-Aid and took 5 measurements in a row.
Measures were: 125, 126, 112, 120, 116.
Compare to: A Kaiser visit, a measurement of 115. I was
surprised.
At Kaiser: 115 was common 3 years ago.
Last 5 Kaiser data measures were 127 (2010), 115 (2010), 117
(2007), 115, 116.
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Graphical Results for Rob’s Blood Pressure
Prior, Data Likelihood, Posterior, CVS
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Graphical Results for Rob’s Blood Pressure 2
Prior, Data Likelihood, Posterior from Kaiser
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Interpreting the Figure
Rob’s Blood Pressure

Red curve is prior - what I believed before seeing the data.
X axis values where red curve is highest are most plausible
values a priori.
Where red curve is low, values are less plausible.
Black curve is likelihood –
Where black curve is high are values supported by data.
Blue curve is posterior – combination of prior and likelihood.
Where blue curve is high are most plausible values given data and
my prior beliefs.
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Inferences for Rob, CVS data

Inference Mean SD 9% CI
Posterior 121.2 2.0 (117.2,125.2)
Likelihood 119.8 2.7 (114.5,125.1)
Prior 123 3 (117.0,129.0)

Table: Likelihood gives the classical inference. Posterior is the Bayesian
solution. Prior is what you guessed prior to seeing the data. Posterior sd is
smaller than classical answer and posterior CI is narrower, ie more precise.
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Formula for Posterior Mean

µ̄ =
n
σ2

n
σ2 + 1

τ2

ȳ +
1
τ2

n
σ2 + 1

τ2

µ0

µ̄ – Posterior mean
µ0 – Prior mean
τ – Prior sd

σ2 – Sampling (data) sd
n – Sample size
ȳ – Data mean

Posterior mean is a weighted average of the prior mean and the data
mean.
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Other Sources of Prior Information

In your analyses, prior information came from you, the experts on
your own blood pressure.
There are other places to get prior information.
Knowledge of usual blood pressure values can be used as prior
knowledge.
For example, nurses’ average SBP is 118.
Nurses’ population sd is 8.7.
Sampling sd of SBP is 13.
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UCLA Nurse’s Blood Pressure Study

An average of 47 measurements of Ambulatory Blood Pressure on
203 Nurses.
Calculate average SBP for each nurse.
Pretend this is their “true" average SBP.
Average SBP is 118, sd of SBP is 8.7.
SD of SBP measures around nurse’s average is 13.
Suppose we record a single SBP measurement of 140.
Does the nurse likely have 140 SBP, or is it a somewhat high
reading from someone with 125 SBP, or a somewhat low reading
from someone with SBP=155?
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Nurse’s Blood Pressure Study
The Population Distribution of Blood Pressures

Population distribution of blood pressures
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Nurse’s Blood Pressure Study
We observe SBP=140

Population distribution of blood pressures
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Compare Bayesian Analysis to Classical Analysis

Sample a single observation y1 from one nurse in the data set.
Model the true mean µ a priori as normal with a prior mean of 118
and standard deviation of 8.7.
The sampling sd is 13.
The classical estimate is just the value of the single measurement.
The Bayes measurement is calculated as illustrated for the
measurement of 140 and as you did in the homework.
Repeat for all subjects.
Which result is closer to the true value? Calculate root mean
squared error, and count which statistical approach comes closer
to true value more often.
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Bayesian Analysis Beats Classical Analysis
Badly

Mean squared error
Bayesian method – 51 units. (7.1)
Classical method – 153 units. (12.4)
Bayes method is 3 times more precise.
Bayesian prior worth roughly 3 observations.
Bayesian estimate closer 140 times.
Classical estimate closer 63 times.
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Nurse’s Blood Pressure Study
Histogram of Bayesian And Classical ErrorsBayesian

Posterior Minus True

D
en

si
ty

−40 −20 0 20 40 60

0.
00

0.
01

0.
02

0.
03

0.
04

0.
05

0.
06

Classical

Sample Minus True

D
en

si
ty

−40 −20 0 20 40 60

0.
00

0.
01

0.
02

0.
03

0.
04

0.
05

0.
06

Robert Weiss (UCLA) An Introduction to Bayesian Statistics UCLA CHIPTS 2011 19 / 32



Nurse’s Blood Pressure Study
Errors from Bayesian And Classical Estimates

Bayesian errors are packed more closely in towards zero.
Almost never larger than 20 units.
Mostly between -10 and 10 units.
Some classical errors are even as large as -40 and +60.
Generally between -20 and 20, but roughly 10% outside that
range.
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More Complex Statistical Models
Hierarchical Models for Blood Pressure

Can model all data from the Nurse’s Blood Pressure Data set at
one time.
Model looks like n=203 copies of our simpler blood pressure data
model.
Plus there is a model on top that models the population of
possible blood pressures.
SBP population mean(≈ 118) and sd≈ 8.7 are estimated in the
model.
Sampling sd (sigma≈ 13) is estimated while fitting the model.
The 203 individual nurse’s average SBP values are also
estimated.
This is called a random effects model.
The random effects are the individual nurses (unknown) average
SBP values.
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Philosophy
Confidence Intervals

Classical statistics confidence interval
I 95% confidence intervals constructed from repeated data sets will

contain the true parameter value 95% of the time.
I Like throwing horseshoes: the true parameter is fixed, the data sets

are random and attempt to throw a ringer capturing the true
parameter.

Bayesian confidence interval (aka posterior interval or credible
interval)

I The probability this interval contains the true parameter value is
95%.

I The data is fixed, the parameter is unknown. Like throwing a dart.

Both: The parameter is fixed but unknown.

Confidence is a statement about the statistician. Bayesian posterior
probability is a statement about the particular scientific problem being
studied.
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Philosophy
Hypothesis Tests

Classical hypothesis test
I p-value is the probability of observing a test statistic as extreme or

more extreme assuming the null hypothesis is true.
Bayesian hypothesis test.

I The probability that the null (alternative) hypothesis is true.

The classical statement requires one more leap of faith: if the p-value
is small, either something unusual occurred or the null hypothesis must
be false. The Bayesian statement is a direct statement about the
probability of the null hypothesis.
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Philosophy
Hypothesis Tests II

Classical hypothesis test
I H0 is treated differently from HA.
I Only two hypotheses
I H0 must be nested in HA.

Bayesian hypothesis test.
I May have 2 or 3 or more hypotheses.
I Hypotheses are treated symmetrically.
I Hypotheses need not be nested.

Example: Three hypotheses H1 : β1 < β2, H2 : β1 = β2, H3 : β1 > β2
can be handled in a Bayesian framework. The result is three
probabilities. The probability that each hypothesis is true given the
data.
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Orthodontic Example
Example of Many Hypotheses

Orthodontic fixtures (braces) gradually reposition teeth by sliding the
teeth along an arch wire attached to the teeth by brackets. Each
bracket was attached to the arch wire at one of four angles: 0◦, 2◦, 4◦,
or 6◦. Outcome is frictional resistance which is expected to increase
linearly as the angle increases. Four different types of fixtures are
used in this study.

4 groups.
Interest in intercepts and slopes (on angle) in each group.
Are intercepts same or different?
Which slopes are equal?
For any two slopes, which is higher? Lower?
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ANOVA table
Treatments, Angle, Treatments by Angle

F value Degrees Freedom p-value
Treatment .25 3 .86
Angle 185 1 <.0001
Treatment×Angle 7.43 3 <.0001

Table: Results from the analysis of covariance with interaction. The p-value
for treatment is for differences between treatment intercepts, and the p-value
for treatment×angle is for differences between treatment-specific slopes.
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Pairwise p-values
Are they significant? What about multiple comparisons?

Treatment
2 3 4

Treatment 1 .03 .04 .04
2 <.0001 .80
3 .0003

Table: P-values for differences between treatment-specific slopes from the
previous ANOVA.
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Orthodontic Example
Plot of Data

Lines are fitted values from usual least squares regression.
Points are average responses for each group 1 through 4 and
each angle.
Four intercepts and four slopes in plot.
Which intercepts appear to be possibly equal, which slopes
appear to possibly be equal?
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Orthodontic Example
Data and fitted lines
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Figure 2: Data means and predictions for treatments 1 through 4 from the analysis of
covariance with interaction (ANCOVA-I).
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Orthodontic Example
Model Description

Alber and Weiss (2009). A model selection approach to analysis of
variance and covariance. Statistics in Medicine, 28, 1821-1840.

Data yij is the j th observation in group i and has angle xij .
yij = αi + βixij + error.
Simple linear regression within group
Different intercept αi and different slope βi in each group.
Prior on intercepts is that any two groups may or may not be
equal.
Same for slopes: Any two slopes may or may not be equal.
Results on next page.
For each pair of intercepts or slopes, the figure plots the
probability that the first slope (intercept) is less than the next slope
(intercept), the probability that they are equal, the probability that
the first is greater than the second.
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Orthodontic Example
Results
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Figure 4: Posterior probabilities of intercept differences (a) and slope differences (b) from
the independent partitions model. For p = 0 (intercepts) and p = 1 (slopes), each pair of
treatments g and g′ had prior probabilities that µpg < µpg′, µpg = µpg′, and µpg > µpg′ of
0.25, 0.5, and 0.25, respectively.
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Discussion of Orthodontic Results

All pairs of intercepts have probability about .6 of being equal.
Intercepts, groups 1, 2, 3: Roughly equal probabilities of one
being larger or smaller than the other if not equal for groups.
Modest probability that group 4 is larger than others, if not equal.
Slopes: 1 less than 2, 4.
Slope 3 less than 1, 2, and 4.
Only slopes 2, 4 may be equal.
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