Implementation Science: Framework, Challenges, and Multidisciplinary Approaches

-CS-

Chunqing Lin PhD

Assistant Research Epidemiologist UCLA-Semel Institute, Center for Community Health Methods Core Scientist, Center for HIV Identification Prevention and Treatment Services (CHIP 15)

CHIPTS Seminar-October 28, 2014

What is implementation science?

-03

♀ Studies the processes and procedures that promote the transfer of evidence-based intervention into realworld settings

AKA: Dissemination and Implementation Research

- CS Dissemination: spreading evidence-based intervention to the audiences in the targeted settings
- CS Implementation: understand how to effectively deliver an evidence-based intervention within a particular setting

Stages of implementation science

B

R Exploration stage:

Identify the need

- os Assess the fit of a new practices with the system
- - Implementation team training/define the responsibilities
 - I Develop detailed implementation plan
 - Assure resources and support
- 🛯 Implementation stage
 - Balance between adaptation and fidelity
 - Strategies to identify and break through bottlenecks
- R Expansion and scale-up stage
 - Summarize lessons learned
 - ${\scriptstyle {\scriptsize \scriptsize \mbox{\scriptsize S}}}$ Study mechanisms to sustain the effort

Distinction between implementation science and traditional efficacy trial

Traditional efficacy trial	Implementation science research				
Under optimal or laboratory conditions (ideal settings)	In real-world settings				
Quantitative	Qualitative or mixed-method				
Random allocation of participants	Natural experimental design or quasi-experimental design (less controlled)				
Control for confounders	Take into account moderators and mediators				
Focus on outcome	Focus on process (implementation indicators)				
Internal validity	External validity (generalizability)				

Implementation science challenges

B

- 🛭 Little consensus on optimal scientific methodology and terminology
- 🛯 Measurement issue
- S Lack of agreement on definitions of constructs and measures

 - Multilevel factors (e.g., policies, work processes culture and regulations, employees, technology etc.)
 - og Multidisciplinary (economics, social science, public health, marketing, public policy etc.)
- 🛯 Insufficient sample size

Case study

CS-RCT "White Coat, Warm Heart (WW)"

A 1760 service providers from 40 county hospitals in two provinces of China

 $\mathbf{\alpha}$ Aim: to reduce service providers' stigmatizing attitudes and behaviors towards PLH

∞Intervention:

- caldentified the trained popular opinion leader providers to disseminate intervention message
- Reprovide universal precaution supplies Qutcome:

csSignificantly reduced prejudicial attitude and avoidance intent towards PLH at 6- and 12-month Li I., Wu Z, Liang L-J, Lin C, Guan J, Jia M, et al. Reducing HIV-Related Stigma in Health Care Settings: A Randomized Controlled Trial in China. American Journal of Public Health, 2013, 103 (2), 286-292

Study questions

CB-

𝔐Hospital gatekeepers' preferences and decision-making in adoption of the intervention model

Reference of the second intervention implementation

Conjoint analysis

- OB A statistical technique used in market research, and later applied in research of individual health behavior
- Aim: to determine what feature of a product is most influential on stakeholder's decision making
- R Instead of presenting a series of disparate single item feature, we present an array of product attributes, to determine the relative importance of different features

Application in implementation science

CR To model stakeholders' preferences and decision-making in adoption of the WW intervention model

R Steps:

- Determine the features (attributes) of the intervention model
- Generate conjoint scenarios as combinations of attributes
- or Present the scenarios and have respondents rate each scenrario
- 🕫 Data analysis

C3								
Administrative support	Cost	Personnel involved	Duration of the training	Format	Availability of technical support	Priority of reducing stigm		
1	Minimum	Relatively cheap	50%	Short (e.g. 1-month)	Flexible (internet-based)	Maximum	No	
2	Maximum	Relatively expensive	50%	Short (e.g. 1-month)	Flexible (internet-based)	Minimum	Yes	
3	Minimum	Relatively	20%	Short (e.g. 1-month)	Inflexible (group sessions)	Minimum	No	
4	Maximum	Relatively cheap	20%	Short (e.g. 1-month)	Inflexible (group sessions)	Maximum	Yes	
5	Maximum	Relatively expensive	20%	Long (e.g. 3-month)	Flexible (internet-based)	Maximum	No	
6	Minimum	Relatively cheap	20%	Long (e.g. 3-month)	Flexible (internet-based)	Minimum	Yes	
7	Minimum	Relatively expensive	50%	Long (e.g. 3-month)	Inflexible (group sessions)	Maximum	Yes	
8	Maximum	Relatively	50%	Long (e.g. 3-month)	Inflexible (group	Minimum	No	

Scenario administration

B

- Q One-on-one face-to-face
- G First introduce the purpose, design, and outcome of the WW intervention
- ${\color{black} {\bf \ensuremath{ \it \ensuremath{ \ensuremath{ \ensuremath{ \it \ensuremath{ \ensuremath{ \it \ensuremath{ n}\ensuremath{ \ensuremath{ \ensuremath{ \ensuremath{$
- © Participants will be asked to rate each scenario in terms of the possibility to adopt the program in the healthcare facilities
- R Five categories ratings: "Highly likely", "Somewhat likely", "Neutral", "Somewhat unlikely", and "Highly unlikely"
- Query feasibility of administering conjoint scenarios

Data analysis

-03

- C a The impact score for each attribute =mean acceptability score of the four scenarios with the preferred value - mean acceptability score of the four scenarios with the non-preferred value
- GR Impact of an attribute =average of the individual impact scores across respondents
- One-sample t-test to determine the statistical significance of the impact of each attribute

Data analysis

Replore the relationship between decision making with

- Demographic characteristics: age, gender, education, title, duration of service
- OS Hospital characteristics: size, level, and type of hospital, HIV caseload, provision of HIV-related services
- $\ensuremath{\mathsf{cs}}$ Perception of the WW intervention: relevance, relative advantage, simplicity
- Perception of inner setting: organizational readiness to change, available resources
- CS Perception of the outer setting: policy, availability of technical support

Bottleneck analysis

Originally a computer simulation method, and later used in healthcare management studies

🛯 Aim:

- CS To identify the weak links (bottlenecks) in improving universal precaution (UP) compliance among service providers
- CS To provide information for choosing a specific way to remove such bottleneck

6

Acknowledgement

G

Center for Disease Control and Prevention

