Measurement of Abdominal Fat Changes and Predictors of Excess Fat Gain in HIV-Infected Individuals Initiating Therapy

CHIPTS Methods Seminar April 11, 2017

Priya Bhagwat

HIV-infected population is aging

Estimated number of people living with HIV aged 50 and older by region, 1995–2013

Source: http://www.unaids.org/sites/default/files/media_asset/12_Peopleaged50yearsandolder.pdf

HIV-infected individuals are at a higher risk for cardiovascular disease

- Cardiovascular disease (CVD) is an important cause of morbidity and mortality in HIV-infected individuals
- 1.3-1.7 times greater rate of myocardial infarction compared to uninfected individuals
- Both HIV infection and antiretroviral (ARV) therapy may impact CVD risk

Fat depots and portal vein hypothesis

- ARV therapy has been associated with metabolic complications and fat abnormalities
 Fat loss and fat gain
- Central fat gain often includes increases in abdominal visceral adipose tissue (VAT)
- VAT has been found to be an important risk factor for cardiovascular disease

http://www.obesityaction.org/educational-resources/resource-articles-2/general-articles/dear-doctor-why-doesnt-liposuction-cure-obesity

Release of free fatty acids (FFA) from an expanded, and highly active intra-abdominal adipose tissue depot Products released from the intra-abdominal depot are drained via the portal vein, leading directly to the liver

Increased exposure to FFA leads to hepatic insulin resistance, fat deposition, lipotoxicity and metabolic derangements

Source: International Chair on Cardiometabolic Risk www.cardiometabolic-risk.org

Overall Objective

- To identify simple approaches to measure and predict excess fat gain in HIV-infected individuals starting antiretroviral therapy
- Study 1: To examine accessible measures of abdominal fat gain
- Study 2: To investigate predictors of abdominal fat gain
- Study 3: To investigate predictors of severe weight gain

Phase III randomized clinical trial from May 2009 to June 2013

Subjects were randomized in a 1:1:1 ratio to each regimen

- Raltegravir (RAL) Integrase inhibitor
- Darunavir/Ritonavir (DRV/r) Protease inhibitor
- Atazanavir/Ritonavir (ATV/r) Protease inhibitor
- Each in combination with Tenofovir Disoproxil Fumarate/Emtricitabine (TDF/FTC)
- □ 1,814 subjects enrolled

Treatment-naïve HIV-infected men and women aged 18 or older

Duration of the study was 96 weeks

- Metabolic substudy of ACTG A5257
 - Evaluates the effects of HIV disease and ARV therapy on cardiovascular and metabolic outcomes
- □ 334 subjects enrolled
- The duration of the A5260s metabolic substudy was 144 weeks
- Significant increases in trunk fat and visceral fat for all three treatment regimens, but no difference between the study arms

Study 1

Association of Changes in Abdominal Fat with Waist Circumference and Self-Reported Changes in HIV-Infected Individuals

Study 1: Background

X-ray computed tomography (CT)
 Measures VAT and total adipose tissue (TAT)

- Dual-energy X-ray absorptiometry (DXA)
 Measures trunk fat
- Waist circumference
 - Strongly associated with visceral and total abdominal fat

Study 1: Background

Self-reported measures

Self-reported measures may be a valid surrogate for less cost-effective and more labor intensive measures, e.g. DXA and CT

Limited data concerning the validity of selfreported fat changes

Study 1: Objectives

Aim 1: To determine in ACTG A5260s data whether self-reported changes in abdominal size at week 96 correlate with changes in CT and DXA measurements between study entry and week 96

Aim 2: To determine in ACTG A5260s data if changes in waist circumference correlate with changes in CT and DXA measurements between study entry and week 96 of observation

Study 1: Abdominal Fat Measures

- Substudy subjects from A5260s with DXA and CT measurements from week 0 and week 96 were used for the analysis
- □ Waist circumference (cm) change between week 0 and week 96
- Self-reported belly size change from week 96 were obtained from the main study data
 - "Lost/No Change"
 - Gained Some/Somewhat Larger"
 - "Gained A Lot/Much Larger"
- Standard measures
 - DXA: Trunk fat mass (g)
 - CT: Visceral and total abdominal fat (TAT) (cm²)

Study 1: Stratification variables

Stratified analyses examining association of waist circumference and self-report with standard measures

Sex

Female, Male

 \square BMI (kg/m²)

■ Underweight/Normal (BMI < 24.9 kg/m²), overweight (BMI 25-29.9 kg/m²), obese (BMI ≥ 30 kg/m²)

Race/Ethnicity

White non-Hispanic, black non-Hispanic, Hispanic, Other

Age

18-30, 31-50, 51-76

Study 1, Aim 1: Methods

- ANOVA to examine differences between group means of both DXA and CT measured fat change across the different self-reported categories
- Linear regression for analyzing any trends between the measured and self-reported data
- Examine gender, race, baseline BMI and age differences

Study 1, Aim 1: Results

Overall and sex-specific means of trunk fat, VAT, and TAT across self-report abdominal size change categories

	N	lo Change/	Ga	ined Some/	Ga	ained A Lot/
		Lost	Some	what Larger	Μ	uch Larger
	Ν	Mean (SD)	Ν	Mean (SD)	Ν	Mean (SD)
Overall						
Trunk fat (kg)	152	0.5 (2.5)	110	2.3 (3.4)	20	4.6 (3.5)
VAT (cm ²)	148	1.7 (28.5)	112	18.7 (37.0)	21	50.1 (58.8)
TAT (cm ²)	148	3.1 (85.2)	112	62.4 (88.1)	21	120.5 (129.2)
Males						
Trunk fat (kg)	134	0.5 (2.4)	101	2.3 (3.2)	17	5.0 (3.7)
VAT (cm ²)	131	2.7 (28.5)	103	19.8 (35.6)	18	52.5 (63.4)
TAT (cm ²)	131	8.4 (69.7)	103	64.0 (88.3)	18	140.6 (114.7)
Females						
Trunk fat (kg)	18	0.4 (3.2)	9	3.0 (5.0)	3	2.3 (1.0)
VAT (cm ²)	17	-5.8 (27.6)	9	6.7 (51.3)	3	35.3 (6.9)
TAT (cm ²)	17	-37.5 (159.0)	9	43.7 (89.1)	3	-0.5 (171.7)

Study 1, Aim 1: Results

Sex-specific change in trunk fat, VAT, and TAT between week 0 and week 96 across self-reported

Study 1, Aim 2: Methods

- Pearson correlation to examine correlation between change in waist circumference and change in DXA/CT measurements
- Examined correlation differences between gender, race, baseline BMI and age groups
- Self-reported abdominal changes and waist circumference were compared in a regression model

Study 1, Aim 2: Results

Sex-specific change in trunk fat, VAT, and TAT between week 0 and week 96 across waist circumferences changes

Study 1, Aim 2: Results

Overall and subgroup-specific Pearson correlations between waist circumference and trunk fat, VAT, and TAT changes between week 0 and week 96

	Т	runk Fat	t (kg)		VAT (cm ²)			TAT (cm ²)			
Subgroup	Ν	ρ	p-value	Ν	ρ	p-value	Ν	ρ	p-value		
Overall	276	0.72	<.0001	274	0.52	<.0001	274	0.62	<.0001		
Sex											
Male	246	0.74	<.0001	246	0.55	<.0001	246	0.71	<.0001		
Female	30	0.64	0.0001	28	0.27	0.162	28	0.21	0.282		
Baseline BMI (kg/m ²)											
Underweight/Normal: ≤24.9	149	0.69	<.0001	148	0.61	<.0001	148	0.68	<.0001		
Overweight: 25-29.9	82	0.83	<.0001	80	0.62	<.0001	80	0.82	<.0001		
$Obese: \geq 30.0$	45	0.70	<.0001	46	0.26	0.082	46	0.34	0.021		
Race/Ethnicity											
White Non-Hispanic	125	0.73	<.0001	123	0.58	<.0001	123	0.60	<.0001		
Black Non-Hispanic	83	0.61	<.0001	83	0.32	0.003	83	0.53	<.0001		
Hispanic	55	0.86	<.0001	55	0.64	<.0001	55	0.86	<.0001		
Other	12	0.86	0.0004	12	0.45	0.146	12	0.55	0.067		
Age (years)											
18-30	79	0.81	<.0001	81	0.46	<.0001	81	0.69	<.0001		
31-50	166	0.69	<.0001	163	0.55	<.0001	163	0.59	<.0001		
51-76	31	0.67	<.0001	30	0.51	0.004	30	0.60	0.0004		

Study 1, Aim 2: Results

Individual predictor and joint models for change in trunk fat, VAT, and TAT between week 0 and week 96

	Trunk Fat (kg)								
-		Indi	vidual Predic	tor Models	Joint Model				
-	N	R ²	Prob > F	Differential Mean Change (95% CI)	N	R ²	Prob > F	Differential Mean Change (95% CI)	
Waist Circumference	276	0.53	<.0001	0.32 (0.28, 0.35)	273	0.54	<.0001	0.30 (0.26, 0.34)	
Self-Reported Abdominal Size Change No Change/Lost Gained Some/ Somewhat Larger Gained A Lot/Much Larger	282	0.15	<.0001	ref 1.85 (1.13. 2.58) 4.13 (2.76, 5.51)			0.011	ref 0.42 (-0.16, 1.00) 1.62 (0.54, 2.69)	

VAT	(cm^2)
-----	-------------------

	Individual Predictor Models				Joint Model				
	Ν	R ²	Prob > F	Differential Mean Change (95% CI)	N	R ²	Prob > F	Differential Mean Change (95% CI)	
Waist Circumference	274	0.27	<.0001	2.68 (2.15, 3.22)	272	0.30	<.0001	2.35 (1.78, 2.92)	
Self-Reported Abdominal Size Change No Change/Lost Gained Some/ Somewhat Larger Gained A Lot/Much Larger	281	0.13	<.0001	ref 17.00 (8.37, 25.63) 48.32 (32.26, 64.39)			0.001	ref 5.15 (-3.27, 13.56) 28.57 (13.21, 43.92)	

Study 1: Discussion

- Self-reported abdominal size changes are strongly associated with CTand DXA-measured abdominal fat changes
- Stratified analyses revealed that the usefulness of self-reported abdominal changes may vary by sex, age, and BMI subgroups
- WC measurements are correlated with abdominal fat changes, specifically CT-measured VAT, both overall and in most subgroups examined
- Between WC and self-reported changes, WC accounts for most of the variability in predicting abdominal fat changes.
- Public health implications: Waist circumference and self-reported changes could be adopted by clinicians as more affordable methods of monitoring abdominal fat accumulation

Role of Treatment and Baseline Predictors on Abdominal Changes in HIV-Infected Individuals Initiating Therapy

Study 2: Objectives

Aim 1: To examine the association of antiretroviral treatments and patient characteristics with waist circumference changes during the study in A5257

Aim 2: To examine the associations of antiretroviral treatments and patient characteristics with selfreported fat changes in A5257

Study 2: Predictors

Treatment

- ATV/r, DRV/r, and RAL
- Demographic characteristics
 - Race/ethnicity, sex, and age (years)
- Baseline characteristics
 - BMI (in kg/m²)
 - CD4+ (cells/mm³)
 - Flow cytometry was used to phenotype CD4+ T-cells.
 - 100 cells/mm³
 - HIV-1 RNA count (copies/mL)
 - Levels were measured using the Abbott RealTime HIV-1 assay
 - Log transformed

Study 2: Outcomes

□ Waist circumference (cm) at week 0 and week 96

- Self-reported abdominal size change at week 96
 "Lost/No Change"
 "Gained Some/Somewhat Larger"
 - "Gained A Lot/Much Larger"

Study 2, Aim 1: Methods

Data for the entire A5257 main study cohort were used for this analysis

- Repeated measures models were implemented to determine the association between predictors and waist circumference gain
 - Examine effect measure modification of treatment by sex and race
 - Examine association of treatment, age, race, sex, and baseline BMI and baseline CD4+/HIV-1 RNA
 - Adjusted for potential confounding from smoking, drinking, illicit drug use, income status, and insurance status

Study 2, Aim 1: Results, ITT Analysis

Treatment arm differences in waist circumference mean changes for overall treatment model and model examining effect measure modification of treatment by sex and race/ethnicity

	Model 1: Ove	rall	Model 2: Effect Measure Modifiction								
				Females versus Males: Differential Mean Change (cm)				Black Non-Hispanic versus Other Race/Ethnicity: Differential Mean Change (cm)			
Treatment Comparison	Differential Mean Change (cm) (95% CI)	n-value	Females	Males	Difference (95% CD)	n-value	Black No Hispanic	ı- Other	Difference (95% CD	p-value	
DRV/r - RAL	-1.24 (-2.22, -0.26)	0.0130	-1.53	0.47	-2.01 (-4.32, 0.31)	0.0901	-2.45	0.47	-2.92(-4.92, -0.91)	0.0043	
ATV/r - RAL	-0.69 (-1.67, 0.29)	0.1656	-2.95	0.34	-3.28 (-5.65, 0.92)	0.0065	-0.10	0.34	-0.44 (-2.48, 1.60)	0.6720	
DRV/r - ATV/r	-0.55 (-1.53, 0.44)	0.2755	1.41	0.14	1.28 (-1.11, 3.66)	0.2933	-2.34	0.14	-2.48 (-4.52, -0.43)	0.0176	

Study 2, Aim 1: Results, ITT Analysis

Study 2, Aim 1: Results, ITT Analysis

Intention-to-treat analysis of waist circumference mean changes from baseline

	Complete Case Ana	alysis	Imputed Data	
Covariate	Differential Mean Change (95% CI)	p-value	Differential Mean Change (95% CI)	p-value
Treatment				
RAL				
ATV/r	-0.34 (-1.39, 0.71)	0.5210	-0.75 (-1.69, 0.20)	0.1208
DRV/r	-0.70 (-1.75, 0.36)	0.1951	-1.23 (-2.18, -0.28)	0.0108
Sex				
Males				
Females	0.62 (-0.51, 1.74)	0.2833	0.87 (-0.14, 1.89)	0.0927
Race/Ethnicity				
White Non-Hispanic				
Black Non-Hispanic	1.05 -0.03, 2.12)	0.0565	0.70 (-0.29, 1.70)	0.1655
Hispanic	-0.10 (-1.40, 1.20)	0.8772	-0.22 (-1.39, 0.94)	0.7060
Other	-1.18 (-3.83, 1.46)	0.3804	-1.96 (-4.46, 0.54)	0.1237
Age (years)	0.0084 (-0.032, 0.049)	0.6854	0.019 (-0.018, 0.055)	0.3198
Baseline BMI (kg/m ²)	0.026 (-0.053, 0.10)	0.5195	0.016 (-0.055, 0.087)	0.6548
Baseline HIV-1 RNA (log ₁₀ copies/mL)	1.83 (1.13, 2.54)	<.0001	1.85 (1.22, 2.49)	<.0001
Baseline CD4+ (100 cells/mm ³)	-0.65 (-0.91, -0.39)	<.0001	-0.75 (-0.98, -0.51)	<.0001

Study 2, Aim 2: Methods

- Chi-square test to examine if self-reported belly fat is independent of treatment group overall and by sex and race subgroup
- Ordinal logistic regression models examining treatment effects and effect measure modification of treatment
- Ordinal logistic regression model examining association between specific ARVs, age, sex, race/ethnicity, baseline BMI, baseline CD4+/HIV-1 RNA and odds of self-reported fat gain, adjusting for confounding
 - Crude models examining individual covariates
 - Complete case analysis
 - Multiple imputation analysis

Study 2, Aim 2: Results, ITT analysis

Odds of reporting a higher category of self-reported abdominal size change

	Complete Case Ar	nalysis	Imputed Dat	a
Covariate	Odds Ratio (95% CI)	p-value	Odds Ratio (95% CI)	p-value
Treatment				
RAL				
ATV/r	0.95 (0.72, 1.26)	0.736	1.05 (0.82, 1.34)	0.696
DRV/r	0.92 (0.70, 1.21)	0.547	0.97 (0.76, 1.24)	0.825
Sex				
Males				
Females	1.34 (1.00, 1.80)	0.050	1.36 (1.05, 1.76)	0.021
Race/Ethnicity				
White Non-Hispanic				
Black Non-Hispanic	0.99 (0.75, 1.32)	0.957	0.95 (0.74, 1.23)	0.703
Hispanic	0.83 (0.59, 1.17)	0.279	0.74 (0.55, 1.01)	0.055
Other	0.67 (0.32, 1.42)	0.301	0.59 (0.29, 1.19)	0.139
Age (years)	1.01 (0.997, 1.02)	0.175	1.01 (0.999, 1.02)	0.078
Baseline BMI (kg/m ²)	1.03 (1.01, 1.05)	0.004	1.04 (1.02, 1.06)	<.0001
Baseline HIV-1 RNA (log ₁₀ copies/mL)	1.30 (1.08, 1.57)	0.006	1.35 (1.14, 1.59)	0.0004
Baseline CD4+ (100 cells/mm ³)	0.88 (0.82, 0.95)	0.0005	0.88 (0.83, 0.94)	0.0001

Study 2: Discussion

- Results indicated that the treatment effect on WC gains was modified by sex and race/ethnicity
 - Previous research has shown that metabolic effects of treatment may be modified by patient characteristics
- Baseline disease state was strongly associated with abdominal changes over 96 weeks through both self-report and WC outcomes.
 - May be due to HIV-infected macrophages that exacerbate inflammation in the adipose tissue and lead to their expansion
- Public health implications: Understanding predictors of abdominal fat gain, a highly prevalent issue, may help physicians optimize treatment approaches to prevent fat accumulation

Predictors of Severe Weight Gain or Clinically Meaningful Increases in BMI After Antiretroviral Initiation

Study 3: Background

Antiretroviral therapy has led to individuals regaining their weight as a "return to health"

Overweight/obesity is now becoming more common in the HIV-infected population

Benefits from weight gain may not persist in overweight individuals

Study 3: Objective

To identify whether certain demographics and baseline clinical characteristics are associated with severe weight gain in HIV-infected individuals

Study 3: Predictors

Treatment

- ATV/r, DRV/r, and RAL
- Demographic characteristics
 - Race/ethnicity, sex, and age (years)
- Baseline characteristics
 - BMI (in kg/m²)
 - CD4+ (cells/mm³)
 - Flow cytometry was used to phenotype CD4+ T-cells.
 - 100 cells/mm³
 - HIV-1 RNA count (copies/mL)
 - Levels were measured using the Abbott RealTime HIV-1 assay
 - Log transformed

Study 3: Outcomes

Extreme fat gain defined by two methods:

- 1. Severe weight gain
 - Normal at baseline: $\geq 10\%$ gain in weight
 - <u>Underweight at baseline</u>: Increase more than two BMI categories and had $\ge 10\%$ gain in weight
- 2. Severe BMI gain
 - Categories include: Underweight (BMI < 18.5 kg/m²), normal (BMI 18.5-24.9 kg/m²), overweight (BMI 25-29.9 kg/m²), obese (BMI 30-39.9 kg/m²), morbid obese (BMI 40-49.9 kg/m²), and super obese (BMI ≥ 50 kg/m²)
 - Normal at baseline: Moved upward at least one BMI category
 - Underweight at baseline: Increase more than two BMI categories

Study 3: Methods

Logistic regression modeling was used to examine predictors of both severe percent weight increases and increases in clinical BMI status.

- Multivariable models including all predictors of interest were examined for each weight gain outcome.
 - These models were adjusted for potential confounding from smoking, drinking, illicit drug use, income status, and insurance status.

Study 3: Results – severe weight gain

Crude and adjusted logistic regression models predicting severe weight gain

	Crude		Adjusted							
			Complete Case Ar	nalysis	Imputed Data Ana	alysis				
Covariate	Odds Ratio (95% CI)	p-value	Odds Ratio (95% CI)	p-value	Odds Ratio (95% CI) p-va					
Treatment										
RAL										
ATV/r	0.76 (0.57, 1.01)	0.057	0.77 (0.54, 1.12)	0.175	0.72 (0.53, 0.99)	0.043				
DRV/r	0.77 (0.58, 1.02)	0.071	0.81 (0.56, 1.17)	0.251	0.74 (0.54, 1.01)	0.056				
Sex										
Males										
Females	1.31 (1.01, 1.70)	0.045	1.24 (0.84, 1.83)	0.288	1.35 (0.97, 1.89)	0.074				
Race/Ethnicity										
White Non-Hispanic										
Black Non-Hispanic	1.69 (1.28, 2.23)	0.0002	1.74 (1.17, 2.58)	0.006	1.55 (1.10, 2.20)	0.013				
Hispanic	1.61 (1.17, 2.23)	0.004	1.13 (0.71, 1.79)	0.603	0.99 (0.67, 1.48)	0.976				
Other	0.64 (0.24, 1.67)	0.359	0.78 (0.27, 2.32)	0.659	0.50 (0.17, 1.45)	0.202				
Age (years)	1.01 (0.998, 1.02)	0.125	1.01 (0.996, 1.03)	0.160	1.01 (0.99, 1.02)	0.286				
Baseline BMI (kg/m ²)	0.96 (0.94, 0.98)	0.0004	0.99 (0.96, 1.02)	0.541	0.98 (0.96, 1.01)	0.177				
Baseline HIV-1 RNA (log ₁₀ copies/mL)	3.45 (2.84, 4.19)	<.0001	2.89 (2.20, 3.80)	<.0001	2.52 (2.00, 3.16)	<.0001				
Baseline CD4+ (100 cells/mm ³)	0.62 (0.58, 0.67)	<.0001	0.80 (0.73, 0.89)	<.0001	0.78 (0.72, 0.85)	<.0001				

Study 3: Results – severe BMI gain

Crude and adjusted logistic regression models predicting severe BMI gain

	Crude		Adjusted				
			Complete Case A	nalysis	Imputed Data An	alysis	
Covariate	Odds Ratio (95% CI	p-value	Odds Ratio (95% CI) p-value	Odds Ratio (95% CI)) p-value	
Treatment							
RAL							
ATV/r	0.85 (0.64, 1.13)	0.2739	0.91 (0.64, 1.30)	0.6156	0.83 (0.62, 1.13)	0.2381	
DRV/r	0.77 (0.58, 1.03)	0.0737	0.78 (0.54, 1.12)	0.1745	0.73 (0.53, 0.99)	0.0414	
Sex							
Males							
Females	1.33 (1.02, 1.74)	0.0347	1.11 (0.76, 1.62)	0.5779	1.14 (0.83, 1.58)	0.4085	
Race/Ethnicity							
White Non-Hispanic							
Black Non-Hispanic	1.60 (1.20, 2.12)	0.0012	1.56 (1.07, 2.29)	0.0218	1.48 (1.06, 2.08)	0.0217	
Hispanic	1.93 (1.40, 2.67)	<.0001	1.44 (0.93, 2.23)	0.1011	1.44 (0.99, 2.10)	0.0555	
Other	0.52 (0.18, 1.50)	0.2260	0.68 (0.22, 2.10)	0.5050	0.48 (0.16, 1.43)	0.1851	
Age (years)	1.01 (0.999, 1.02)	0.0653	1.01 (0.99, 1.02)	0.3956	1.01 (0.995, 1.02)	0.2407	
Baseline BMI (kg/m ²)	1.01 (0.99, 1.03)	0.5888	1.04 (1.01, 1.07)	0.0106	1.03 (1.00, 1.05)	0.0375	
Baseline HIV-1 RNA (log ₁₀ copies/mL)	2.32 (1.94, 2.77)	<.0001	2.11 (1.64, 2.73)	<.0001	1.79 (1.44, 2.22)	<.0001	
Baseline CD4+ (100 cells/mm ³)	0.69 (0.64, 0.74)	<.0001	0.83 (0.76, 0.92)	0.0002	0.79 (0.73, 0.86)	<.0001	

Study 3: Discussion

- Treatment with a protease inhibitor may be protective against severe weight/BMI gain compared to Raltegravir
- Being black non-Hispanic was significantly associated with an increased odds of severe weight/BMI gain
- We also found a strong association between baseline disease state before ART initiation and increased odds of severe weight/BMI gain
- Public health implications: As the prevalence of overweight/obesity increases, understanding characteristics associated with weight gain may help manage CVD risk and metabolic complications

Overall Strengths and Limitations

Strengths

- Collected CT/DXA measurements
- Longitudinal study to examine changes in abdominal fat and weight over 96 weeks
- High-quality clinical trial data
- Large sample size and diverse population for subgroup analyses

Attrition resulting from loss to

Limitations

follow-up

- Missing data on covariates
- Results may not be generalizable to other target populations
- Data on diet and exercise was not collected

Acknowledgements

I would like to thank my Dissertation Committee:

Dr. Judith S. Currier Dr. Pamina M. Gorbach Dr. Catherine A. Sugar Dr. Marjan Javanbakht Dr. Roger Detels

Acknowledgements

Additional collaborators:

Dr. Grace McComsey Dr. Igho Ofotokun Dr. Todd Brown Dr. Carlee Moser Dr. Heather Ribaudo UCLA FIELDING SCHOOL OF PUBLIC HEALTH

