

Multiple imputation strategies for incomplete data in clustered longitudinal studies

Panteha Hayati Rezvan, Ph.D., phayatirezvan@mednet.ucla.edu Thomas R. Belin, Ph.D., tbelin@mednet.ucla.edu

Overview

- **Objectives**: assess the robustness of conclusions to proper handling of missing data
- Methods: contrast widely-used multiple imputation strategies
- Results: the findings from this research can provide methodological insights with enormously broad potential application to behavioural and biomedical research settings
- Future work: compare MI strategies with a recently developed multi-level imputation technique

Objectives

Missing data: General considerations

- Missing data are frequently encountered in HIV-related research
- Consequences of missing data
- Can introduce bias
- Loss of precision/power

Missing data: Modeling and Analysis Process

- Multiple imputation (MI) is a well-recognized technique for handling missing data
- Implementation of MI in standard statistical software typically assumes that data are 'Missing at random' (MAR)

Step 1 - Imputation

Replace missing values with multiple plausible values

Step 2 - Analysis

- Analyze each imputed dataset separately using statistical methods applicable to the complete data
- Combine results using statistical methods applicable to the complete data, reflecting both between – and withinimputation variability in estimated quantities

Methods

Imputation strategies

- Multivariate Normal Imputation (MVNI)
- Fully Conditional-Specification (FCS)
- Sequential regression models
- Variable by variable
 - Linear regression for continuous
 - Logistic regression for binary

Recommendations for building imputation models

- Include all variables in the analysis model
- Include auxiliary variables
 - Predictors of incomplete variables
 - Predictors of missingness

Case study - Background

- Philani study examines a home-visiting prevention program delivered by neighbourhood mentor mothers
- Targeted mothers at risk for hazards alcohol use, HIV, TB and malnutrition as well as their children
- CRCT 1238 pregnant women recruited
- Standard Care (SC) n=594
- Philani Intervention Program (PIP) n= 644

Case study - Research question

 Assess the effect of the PIP on children's outcomes through the first five years of life.

Analysis model	Linear mixed-effects model
Outcome	Growth measure (waves 2-6)Height-for-age z-score (HAZ)
Analysis variables	HIV status, Neighborhood, Time- point, Interaction between time- point & neighborhood
Auxiliary variables	Edinburgh Postnatal Depression Score, Any alcohol use, Married/lived with partner, Income above 2000 RAND, Food insecurity, Any violence, Maternal age*, Education*, Formal housing*

^{*}No missing data

Number (%) of missing values			
Assessments	HIV status	HAZ	
Pregnancy	156 (14.50)	-	
Birth	159 (14.78)	160 (14.87)	
6 month	136 (12.64)	177 (16.45)	
18 month	123 (11.43)	259 (24.07)	
36 month	226 (21.00)	284 (26.39)	
60 month	200 (18.59)	244 (22.68)	

- 606/1076 (56.32) incomplete cases
- % of missing data in auxiliaries
- Min (8.18), Max (20.82), ρ <0.3

Case study - Analysis plan

- Longitudinal Mixed-Effects Models (LMM), include both fixed and random effects
- MI strategies with
 - I. No auxiliaries
- II. 35 auxiliaries (inclusive strategy)
- III. 11 baseline auxiliaries
- IV. 15 baseline (max 10% missing) and post-baseline auxiliaries (max 3% missing)

Results

Imputation model failure

- Inclusive strategy did not converge initially
- Collinearity among predictors
 Strategies for handling lack of convergence
- Collapse HIV status
- Exclude "marital status" at wave 3
- Use augmentation when using MICE
- After modification, inclusion strategy converged
- Inclusive strategy slightly higher point estimates/SE & wider Cl

Figure 1: Regression coefficient for HIV status

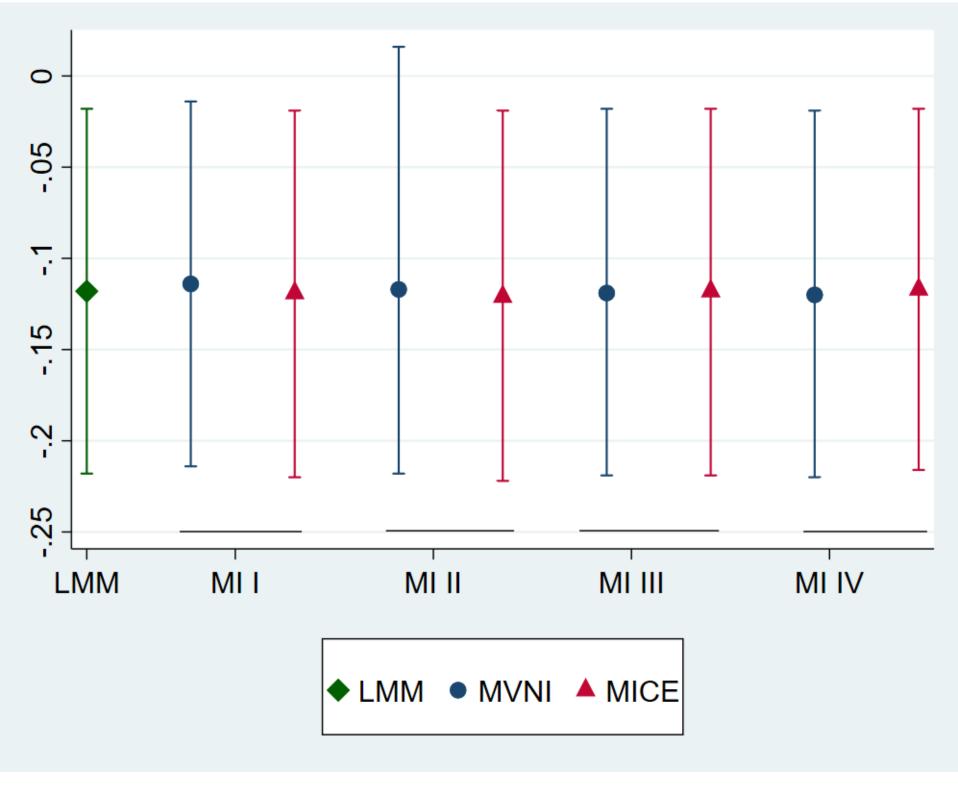
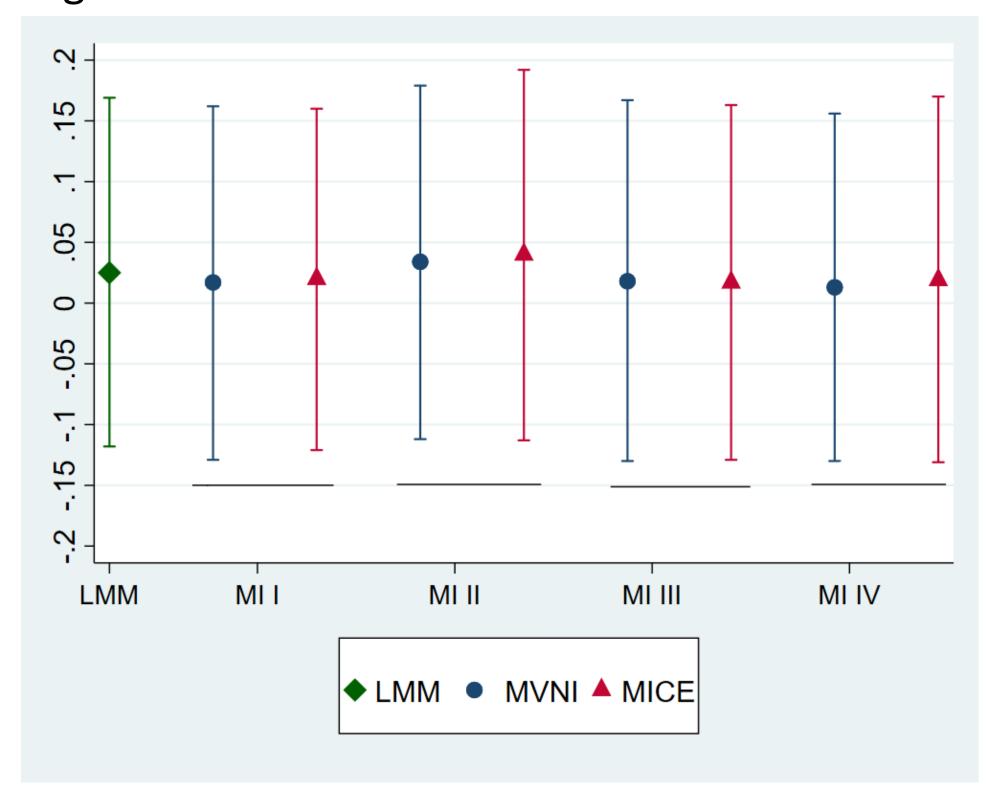



Figure 2: Intervention effect estimate

Interpretation: Findings robust to choice of imputation strategy

Future work

- Extension to covariates with missing data
- Comparison of the results with the Longitudinal Factor Imputation Method, a recently developed multi-level MI technique
- Linear mixed model for longitudinal associations
- Factor-analysis strategy for cross-sectional associations to keep the number of model parameters manageable